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Fig. 1. An overview of our system. (a) The spatial view shows the traffic jam density on each road of Beijing by color, and one
traffic jam propagation graph is highlighted in black. (b) The embedded road speed views show the speed patterns of four roads in the
highlighted black propagation graph. (c) The graph list view shows a list of sorted traffic jam propagation graphs. (d) The multi-faceted
filter view allows filtering of propagation graphs by time and size. (e) The graph projection view shows the topological relationship of
graph clusters, where graphs in the same cluster have very similar topology.

Abstract—In this work, we present an interactive system for visual analysis of urban traffic congestion based on GPS trajectories.
For these trajectories we develop strategies to extract and derive traffic jam information. After cleaning the trajectories, they are
matched to a road network. Subsequently, traffic speed on each road segment is computed and traffic jam events are automatically
detected. Spatially and temporally related events are concatenated in, so-called, traffic jam propagation graphs. These graphs form a
high-level description of a traffic jam and its propagation in time and space. Our system provides multiple views for visually exploring
and analyzing the traffic condition of a large city as a whole, on the level of propagation graphs, and on road segment level. Case
studies with 24 days of taxi GPS trajectories collected in Beijing demonstrate the effectiveness of our system.

Index Terms—Traffic visualization, traffic jam propagation

1 INTRODUCTION

Traffic jams form a serious problem in modern cities. They bring about
considerable economic loss, increase travel times and aggravate pollu-
tion. Governments spend a great amount of money trying to monitor
and understand traffic jams, but this seems difficult due to the com-
plex nature of traffic jams. One of the complexities is unpredictability.
Sometimes traffic jams occur, sometimes not. Another complexity is
that traffic jams are dynamic and interrelated. Traffic jams can, for
instance, propagate from one road on to other roads. Due to these
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complexities, a fully automatic analysis of traffic jams is hard, requir-
ing considerable experience and knowledge. In this work, we present
a visual analysis system to study the patterns of traffic jams and their
propagation. Our system combines automatic computation and human
knowledge. We first extract traffic jams from GPS trajectories, from
which we construct propagation graphs. Then we design a visual inter-
face to explore both traffic jam patterns and the propagation of traffic
jams. As far as we know, there is no previous work in visual analytics
that deeply studies these traffic jam aspects.

Traditional traffic jam detection methods are based on road side sen-
sors, like induction loops or radar [31] and monitor only a few critical
points [25]. A GPS based method, however, can theoretically monitor
a complete road network. This enables us to better study traffic jam
propagation. Furthermore, the installation of expensive road side de-
vices is not required. Previous GPS based traffic jam detection meth-
ods either just study separate jams [10, 34], therefore giving scattered
traffic information of the road network, or being unable to attribute
traffic jams to specific roads [29, 15]. Traffic jam data from these
works are not suitable for visual exploration. In this work, we derive a
road bound traffic jam dataset from GPS trajectory data, and structure
the detected traffic jams by building propagation graphs. Our data is
more suitable for visual exploration.

In the visual interface, as shown in Figure 1, we allow users to
make multilevel exploration, from traffic patterns on a single road to
the traffic jam condition in a whole city. We support various filtering
techniques to query specific kinds of propagation graphs, and we allow
users to compare them.

Our major contributions are:

• We present a process to automatically extract traffic jams from



noisy GPS trajectory data. Our data is structured and road bound,
therefore suitable for visual exploration.

• We design a visual interface to explore the traffic jams and their
propagation. The exploration is multilevel, and supports filtering
and comparison of traffic jam propagation graphs.

2 RELATED WORK

Our related work section is split into an analysis subsection on traffic
event detection and two visual subsections on traffic visualization and
propagation graph visualization.

2.1 Traffic Event Detection

Perhaps the most commercialized technique to detect traffic events is
by radar like sensors [31]. Analyzing video streams from a roadside
camera also helps to understand the traffic [53, 22]. However, both
techniques require the installation of high-cost devices, and can only
monitor at fixed positions along the road. In contrast, the GPS tech-
nique is cheaper and able to monitor the whole road network. There-
fore, much of recent research focuses on analyzing GPS trajectories.
The data mining community has long been working on trajectory

data. They have studied different kinds of patterns [23, 26]. See Zheng
et al.’s book [54] for an overview.
We are most interested in traffic jam detection. Traffic jams are im-

portant traffic events. They are usually characterized by long travel
time, or, equivalently, low speed. Many traffic jam detection algo-
rithms are based on road speed calculation [18], or low speed vehicle
cluster detection [10, 34]. Bauze et al.’s traffic monitor system also de-
tects traffic jams by low speed [13]. We use a road speed calculation
based method to detect traffic jams. It provides traffic situation data,
not only in a few congested places and during a few periods, but it
does so in much larger regions and periods. Such data is more suitable
for free exploration. Our work is different from the works cited above,
in that we focus on the propagation of traffic jams.
Krogh et al. [25] have studied green waves on road stretches with

signalized intersections. However, this differs from traffic jam propa-
gation, and their scenario is much simpler than our city network. Re-
cently, Zheng et al. published a paper [29] studying the causal inter-
actions of traffic outliers. They first segment a city into medium sized
regions, then study the traffic flows on the links between the regions.
Outliers are detected and arranged as outlier trees. Our propagation
graph construction uses the same idea, but our focus is on traffic jam
events, not on outliers. A more important difference is that, traffic jams
originally happen on roads, not on links between regions. So when
users detect an anomalous link, it is difficult to explore and explain
their results. Although in later work [15] they correlate the anomalous
links to anomalous routes, it is still unclear where anomalies occur on
long routes. In our results, we can directly see traffic jams propagating
on roads, as they actually are. Our model is more suitable for visual
analysis.
The traffic condition in road networks can also be modelled by

Probabilistic Graph Models (PGM) [27, 37]. This technique is able
to learn the temporal change of traffic conditions for each road, and
the spatial dependency between roads from historical data. Therefore,
it can simulate the macro traffic, and can make predictions of future
traffic conditions. However, here we mainly want to summarize the
historical data, and support user explorations. Our traffic jam detection
and propagation graph construction algorithm already summarize the
historical traffic and their results are easy to understand and explore.
In contrast, a PGM, although being more generic, has parameters that
are harder to tune, and is harder to understand, explore and evaluate.

2.2 Traffic Visualization

Amajor type of traffic data is trajectory data. In this case, all trajectory
visualization techniques can be used. An overview of all trajectories
is the first step in their visual analysis. It often requires aggregation.
A density map [51] provides an overview by visual aggregation. It
plots the trajectory density and helps identify “hot” spots. Density
maps may also show the density of multi-variant trajectories [42] and
extracted events [41]. Different from density maps, techniques such

as spatial aggregation [12] and spatial-temporal aggregation [6, 43]
provide overview by data aggregation. They discretize the spatial and
temporal dimension into many regions, flows, or bins. Statistics are
performed on each discrete spatial-temporal unit, e.g. a region in a
time bin. This aggregated information is then visualized.

Micro-behavior analysis is another common task. In this case, tra-
jectories have to be treated individually. Hurter et al. [21] show how to
select trajectories with specific position and attributes. Guo et al.[19]
present a system to analyze the traffic at a road intersection. Liu et
al. [28] present a system to study the route diversity in a city.

Temporal information is critical in trajectory visualization. Space
time cube [20, 24, 7] uses z-axis to represent the time, but suffers from
visual clutter. A trajectory may also be represented as a timeline [9,
16], but the spatial information is then largely lost. Events can be
extracted from these time series [11].

For trajectory attributes, Tominski et al. [46] and von Landesberger
et al. [49] have addressed their visual analysis problem.

Some of the above cited works study the events of trajectories.
However, none of them focuses on the interactions of these events,
and none of them focuses on traffic jams. Our work aims to deeply
study traffic jams and their interactions.

Although most of the traffic visualizations use trajectory data, some
use other types of sensor data. Pack et al. [35] study traffic incidents
data. They design a linked view interface to visualize the spatial, tem-
poral and multi-dimensional aspects of the incidents. Users are al-
lowed to select, filter and cluster these incidents. Piringer et al. [38]
study the surveillance videos in a tunnel. They automatically detect
and prioritize different types of events and mark them in space and
time. For each event, users can check the original videos. Both focus
on traffic events, but none of them on the interactions of these events.
Our work studies these interactions, and we use trajectory data, which
requires different event detection algorithm.

2.3 Propagation Graph Visualization

Propagation graphs may be visualized by animations and small mul-
tiples. However, these techniques have limitations [39]. Therefore,
people also designed other visual metaphors. The spatial, temporal
and topological aspects of the propagation graph can be visualized by
separate techniques, like FlowMap [48], Massive Sequence View [47]
and graph layout [44]. It remains challenging to visualize all aspects
in one view. In our work, we have applied the animation, flow map
and graph layout techniques.

3 OVERVIEW

In this section, we first present the design requirements. After that we
describe the input data, and define the traffic jam data model. Finally
we present the system workflow.

3.1 Design Requirement

To study traffic jams, we need a data model, according to which we
extract and structure the traffic jam data. It should satisfy the following
three requirements:

R1: Complete We require that basic traffic jam information is
available, including location and time. Besides, speed information
should always be there, even when there is no traffic jam. It helps users
to understand how traffic condition changes, and to check whether the
traffic jam detection is appropriate.

R2: Structured We require that the traffic jams in the model are
interrelated: we are not only interested in individual traffic jams at
separate locations and time, but also how these traffic jams are related,
and how they propagate from one location to another.

R3: Road boundWe require the traffic jams to be defined on roads,
and to propagate along the road network, as they are actually happen-
ing. This help users to associate the traffic jam data with their real
world knowledge during visual exploration.

A visual interface to explore and analyze the data model, should
satisfy the following requirements.



R4: InformativeWe require that the system shows all critical infor-
mation of the traffic jams, including location, time, propagation path,
size of the propagation, and the road speed.

R5: Multi-levelWe require that the traffic jams can be explored at
multiple levels. The lowest level should be the congestion behavior on
a single road segment. Above that we require to analyze the traffic jam
propagation among different road segments, and to compare different
propagations. On the highest level, we require to study the congestion
status of the whole city.

R6: FilterableWe require to filter traffic jams according to spatial,
temporal properties, and size of propagation. In this way, we can focus
on specific types of traffic jams, and make deeper analysis of them.

3.2 Description of Input Data

We use GPS trajectory data and road network data as input, to cal-
culate and analyze traffic jams. GPS trajectory data contains many
trajectories. Each trajectory consists of a list of sampling points.
Each sampling point has a position record (�longitude, latitude� for
2D data), time stamp time, speed magnitude velocity, moving direc-
tion vangle, and optionally a set of attributes �a0,a1, ...an−1�. These
sampling points are sorted in time ascending order. Each part between
two consecutive sampling points is called a trajectory segment.

A road network consists of nodes and ways. Each node has a spatial
position. It can be either an intersection or a shape point. Each way
contains an ordered list of nodes that defines the spatial position and
shape of the way. A way can be a one-way street or a two-way street.

Our GPS dataset is a real taxi dataset recorded in the city of Beijing,
which is prone to traffic jams. The dataset contains the GPS trajecto-
ries of 28,519 taxis. Estimated from a government report [5], they
include 43% of all licensed taxis in Beijing, and account for 7% of
the traffic flow volume within Beijing’s 4th Ring. The dataset spans
24 days, from March 2nd to 25th, 2009. It contains 379,107,927 sam-
pling points, and the data size is 34.5GB. The only attribute is the
boolean passengerState, indicating whether there are passengers in
the taxi. The sampling rate is one point per 30 seconds. However,
60% of the sampling points are missing, so, two consecutive points
frequently have a time difference of over 3 minutes.

Our road network dataset comes from a query from Open-
StreetMap’s jXAPI [17]. We extract all roads in the spatial range
from 116.109E to 116.673E and from 39.743N to 40.119N. This gives
40.9MB of data, containing 169,171 nodes, and 35,422 ways.

3.3 Traffic Jam Data Model

Our model structures three types of information: the road speed, the
traffic jams, and the relationships between traffic jams. In our model,
the time is discretized into time bins. The two directions on a way are
treated separately, each as a directed way (abbrev. as dWay). A dWay
and a time bin are the smallest spatial and temporal unit.

The road speed information gives a basic description of the road
condition. For each dWay, at each time bin, there will be a speed
record. The speed value can be empty if it can not be estimated.

The traffic jam information summarizes all the detected traffic jams.
It consists of a list of traffic jam events (abbrev. as events). An event
is defined as a triple �d, t0, t1�, where the dWay d is the location of the
event and the integers t0 and t1 with t0 ≤ t1 are the start and end time
bin of the event, respectively. So, the whole event takes place in the
interval [t0..t1] that spans t1− t0+1 time bins.
The relationships between traffic jams are characterized by traffic

jam propagation graphs (abbrev. as graphs). A graph is a directed net-
work of events, defined as �V,E�, whereV is a set of events, and E is a
set of directed links between events. It is both acyclic and connected.
A directed link is notated as e1 → e2, meaning that event e1 leads to
e2, or equivalently, e2 is caused by e1. An event can be caused by 0
or more events and can also lead to 0 or more events. For each graph,
a spatial propagation path (abbrev. as path) can be derived, which is
a directed network of dWays. It can have cycles. A link d1 → d2 in a
path means that the corresponding traffic jam propagates from dWay
d1 to d2.

3.4 Work Flow

Our visual analysis work consists of two phases. The first phase is
preprocessing, in which we start from the input data, and extract traffic
jam data that fits our model. The second phase is visual exploration, in
which we explore the preprocessed data. Figure 2 gives an overview
of our system. We will explain the preprocessing phase in Section 4,
and the visual exploration phase in Section 5.

4 PREPROCESSING

Our preprocessing phase consists of six steps. The first two steps im-
prove the quality of the input data. In step 1 Road Network Processing,
we improve the road network quality by filtering out irrelevant data,
merging and splitting ways, and correcting errors. In step 2 GPS Data
Cleaning, the trajectories are cleaned. One obvious thing is to remove
GPS errors. To accurately estimate road speed later on, we also filter
out stops that do not reflect traffic conditions, such as parking.

To estimate road speed we perform another two steps. In step 3Map
Matching, we match GPS trajectories to the road network to correlate
the trajectory speed with the road speed. After this step, each trajectory
sampling point is mapped to one position on a dWay (not a lane), and
each trajectory segment is mapped to a path on the road network. In
step 4 Road Speed Calculation, we estimate the speed of a dWay at
a time bin, based on the speed of the trajectories that map to it. This
can be performed by averaging the trajectory speed. This estimation
can be inaccurate due to, for instance, insufficient number of mapped
trajectories, and incomplete filtering of parking cases in step 2.

In the last two steps, propagation graphs are constructed on traffic
jam events. In step 5 Traffic Jam Detection, traffic jam events are de-
tected based on speed. For each dWay, an abnormally low speed for
consecutive time bins, is considered as a traffic jam event. Finally,
in step 6 Propagation Graph Construction, we predict the causal rela-
tionships between the detected traffic jam events, based on their spatial
temporal relationship.

In the rest of this section, we discuss the preprocessing steps in
more detail. Further details on their parameter setting are in the ap-
pendices.

4.1 Road Network Processing

The road network data downloaded from OpenStreetMap not only
contains highways, but also waterways, buildings, etc. Therefore, we
first extract all drivable ways from the data. Then we filter out the tiny
road pieces that are not connected to the major network, and ensure
all roads connected together. After that, we hope that the heading re-
lation between two dWay is clear and unidirectional. Therefore, we
reconstruct the ways in the road network data, such that two ways can
only intersect at their end points. In the reconstruction, we require
that the length of each way is less than 1km, which ensures the spatial
resolution.

4.2 GPS Data Cleaning

For the GPS data, we remove five kinds of records: the irrelevant data,
the erroneous data, the low sampling data, the non-jam stop data and
the tiny trajectory data. We use a set of filters to achieve this.

Data out of the spatial range of the road network is irrelevant and
removed by filter F1. Problems in erroneous data with respect to time
or position are removed by filters F2 and F3. They typically manifest
as two records with identical time stamps or segments with high speed.

F1: Unrealistic Coordinates We remove sampling points outside
the range [116.109E, 116.673E] x [39.743, 40.119N].

F2: Duplicated Time Stamp If in a trajectory there are points with
the same time stamp, we only keep the first occurrence and remove the
other points with the same time stamp.

F3: High Speed We consider a trajectory segment speed higher
than 90km/h unrealistic. In such cases we remove the trajectory seg-
ment and split the trajectory into two parts.

A low sampling rate results in trajectories with long segments or
long time intervals. Our speed calculation is based on trajectory seg-
ments, so we require realistic speed change between the start and end
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Fig. 2. The work flow of our system. In the preprocessing step, we extract traffic jam data from GPS trajectories and a road network. In the visual
exploration step, we analyze the extracted traffic jams and their propagation.

points of a segment for interpolating accurately. This is not possible
in such cases. Therefore, filter F4 and F5 remove them.

F4: Long DistanceWe remove segments with length over 2km.

F5: Long Time We remove segments with time interval over
10min.

Non-jam stop data are due to parking, passengers getting in or out
of the car, and stopping to wait for passengers. This does not include
waiting for green lights, because long time waiting for green light im-
plies congestion. Filter F6 removes the first parking case and F7 re-
moves the passenger cases.

F6: Parking We assume taxis staying within a 50m radius during
30min are actually parking, and thus remove these points.

F7: Waiting for Passenger We remove segments where the pas-
sengerState attribute changes. This splits trajectories into ones with
constant passengerState. Then we remove stops at the beginning and
end of the shorter trajectories, assuming that taxi drivers usually wait
for new passengers immediately after dropping old ones, or that they
wait until they have a new one. For stops at the beginning or at the
end, we assume either a few points with identical positions, or a point
with velocity equal to zero.

F6 is implemented using a stop detection algorithm [36]. We do not
plan to identify interesting spots as in the original paper, but parking
stops, including the cases when GPS position seriously oscillates (Fig-
ure 3(Right)). Therefore, we just use the Euclidean distance in their
algorithm, not the distance along the path.

���

Fig. 3. (left) Stops removed by F6, with each sampling point represented
by a red dot. (right) One stop with the sampling points connected by red
lines. It spans 97min, and seems to oscillate due to GPS drift.

Tiny trajectories are mostly small fragments generated by filters.
By rendering them on the screen, we find that they can hardly be used.
We remove them by filter F8.

F8: Tiny Trajectory We remove all trajectories with at most 5
sampling points or less than 500m long.

The filters are applied in the order: F1, F2, F3, F4, F5, F6, F7, where
filter F8 is applied directly after each filter to remove tiny trajectories.

4.3 Map Matching

We adopt the ST-matching algorithm [30] for map matching, since it
is suitable for data with low sampling rate. However, the algorithm
can not be directly used in our work, and we adapt it at three points.
First of all, as most of the ways in our road network data do not have
speed limit records, T-matching is impossible. Therefore, we only do
S-matching. Analysis in the original paper [30] shows that the accu-
racy then drops by 2%. We consider that acceptable. Secondly, as
our road network data has a few errors, such as wrong road directions
and missing roads, we allow trajectory sampling points and trajectory
segments to be unmatched. Otherwise, there would be many errors, as
shown in Figure 4. We assume a missing match is better than a wrong
match, in terms of accurately estimating the road speed. Sampling
points without candidate match points are considered unmatched. Tra-
jectory segments with transmission probability V less than a threshold
Δ are considered unmatched. Finally, we would match each trajec-
tory sampling point to one position on one dWay, therefore we need
to know the driving direction of the taxi at each sampling point. This
is achieved in a post processing step by simply looking at the matched
position of neighbouring sampling points.

Fig. 4. The map matching produces many errors, if we do not allow
unmatch. One example is the red trajectory segment from sampling
point A to B matching to a long blue path. This is due to missing roads.

4.4 Road Speed Calculation

After mappping the trajectories to the road network, we can use tra-
jectory speed to calculate road speed. In this step, we only use the
matched parts of the trajectories. We choose a time bin size of 10min.
For each dWay and for each time bin, we extract all taxi trajectories
that pass the dWay within this time bin. We reconstruct the movement
of the taxis assuming they follow the map matching result, and move at
constant speed between two consecutive sampling points. Therefore,
we can calculate an average travel speed for each taxi. After removing
the taxis with exceptionally high speed (detected by an outlier detec-
tion algorithm [1]), we make an average of the average speeds on the
remaining taxis and get the road speed. The speed averaging is per



trajectory, not per sampling point. We also record support, which is
the number of remaining taxis. The higher the support, the higher the
accuracy of the road speed calculation. We define that a speed esti-
mation is valid when support ≥ min support. The default value is
min support = 5.

4.5 Traffic Jam Detection

After calculating the road speed, we do a traffic jam event detection
on each dWay. Our idea is to use a speed threshold per dWay based on
an estimation of the free-flow speed of the dWay. A speed limit may
be a good estimation. Unfortunately we do not have it in our data.
Krogh et al. [25] estimate free-flow speed from non-peak hour speed
records. However, in Beijing different dWays may have different non-
peak hours. Instead, we sort all valid speeds for a dWay in ascending
order, and pick the speed value at the percentage F% position. Then
each time bin on this dWay, with a valid speed less than percentage
C% of the free flow speed, is said to have a low speed. The default
parameter values, F = 85 and C = 45, give us 400,985 events.

4.6 Propagation Graph Construction

Now we have extracted events for all dWays, we build the propaga-
tion graphs by defining directed links among events. We use a rule
based method. We assume a directed link e1 → e2 exists if and only if
e1.t0 ≤ e2.t0 ≤ e1.t1, and e1.d is immediately ahead of e2.d. The for-
mer statement is a temporal constraint, saying that when e2 starts, e1 is
still happening. The latter statement is a spatial constraint, saying that
the two events are spatially connected, and the traffic jams propagate
backward. The backward propagation is our assumption, which means
the traffic jam will propagate in a reverse direction to the direction of
traffic flow. Although it is not firmly validated, many observations and
experiments [14, 45] support this. We have this constraint because our
temporal resolution is not high enough. When we observe two adja-
cent roads congest at the same time bin, it is not clear from the data
which leads to which. In our road network, it is usually the case that
one dWay is ahead of another. One exception is for the two directions
on the same two-way street. We do not make any link between them,
because such propagation is associated with a u-turn traffic flow. By
experience, such u-turn traffic flow is usually not dominant in the total
traffic flow volume, and not likely to propagate traffic jams. Besides,
our test shows adding such links it will add considerable noise in the
constructed graphs.
We construct the graphs with a modified version of the STOTree

algorithm [29] and end up with 226,227 graphs of which 162,429 con-
tain only one event. We calculate the spatial propagation path and
three size measures for each graph: number of events, time span, and
total distance. The latter is the sum of the length in kilometers of all
traffic jam events in the graph.

5 VISUALIZATION DESIGN

According to the design requirements in Section 3.1, we provide our
system with five views (in four windows). We design a pixel-based
road speed view (embedded in Figure 1(b)) to show the speeds and
events of one dWay. We design a graph list view (Figure 1(c)) to show
the propagation graphs, and the graph projection view (Figure 1(e)) to
show their topological relationships. We design a spatial view (Fig-
ure 1(a)) to show the traffic jam density on each dWay, and the prop-
agation path of one highlighted graph. We also design a multi-faceted
filter view (Figure 1(d)), to filter the propagation graphs.

5.1 Pixel Based Road Speed View

In our system, the road speeds and traffic jam events carry the low
level traffic jam information. In designing a visualization for them,
we have two concerns. Firstly, we need a compact visualization to be
able to present multiple roads side by side for comparison. Secondly,
according to our experience, road speed variation has strong daily and
weekly patterns. It is important to present them in the analysis.
With these concerns in mind, we design a table-like pixel based

visualization for a dWay, as illustrated in Figure 5(c). Each row rep-
resents a day, each column represents a 10 minutes time interval, and

(a) (b)

(c)

(d)

(e)
Fig. 5. Road speed view showing the speeds and events for one dWay.
For the green road in (a) the speed variation is shown in (c). Each row
represents one day, and each column represents 10min in a day, so
each cell is a time bin. Cell color represents the calculated speed, with
the color scale in (b). We mark the extracted events by black boxes
in (c). Instead of using black boxes, we can use cell size to mark the
events, as shown in (d). The events involved in the currently highlighted
propagation graph are highlighted in a thick black box. When filtering is
applied, all irrelevant cells turn gray, as shown in (e).

each cell represents a time bin. Optionally, the table can be divided
into weekly blocks, by the black horizontal lines. We use cell color to
represent the road speed on a dWay at the corresponding time bin. The
color scale is given in Figure 5(b): red represents low, and green high
speed. For cells without a valid speed estimation, we use gray. Mouse
hovering over a cell reveals detailed speed information, including the
time of the cell, the speed value and its support between brackets.

In order to show the events on this dWay, we draw black boxes on
the road speed view. Figure 5(c) illustrates this. The cells covered in
the box correspond to the time bins in traffic jams. Specifically, the
left/right boundary represents the start/end time of the event. If we
are more interested in the events, than in the details of speed, we can
use cell size to mark events, as shown in Figure 5(d). We make the
cells in traffic jam events, which we call event cells, bigger than the
non-event cells. Events pop out in this style, and no black boxes are
required to mark events. This is especially useful when we embed the
road speed view in the spatial view, as shown in Figure 1(b). Then,
due to limited screen space, we have to compromise speed for event
information. Using black boxes would seriously hide the cell color.

In the road speed view, we can highlight a traffic jam propagation
graph by clicking on an event, which then will be marked by a thick
black box (Figure 5(c),(d)). The propagation graph containing this
event will be highlighted, and shown in the spatial view.

We only show information for cells satisfying the filter, other cells
turn gray, including non-event cells outside of the time range (defined
by the temporal filters), and event cells not belonging to the selected
propagation graphs. It is possible that an event outside the time range
is not gray, as long as its corresponding propagation graph intersects
with the time range. A filtered road speed view is shown in Figure 5(e).

5.2 Graph List View

After showing the speeds and events on individual roads, we consider
showing the propagation graphs. This is information on a higher level,
and reveals the interactions of traffic jams on different roads. In de-
signing the visualization to show the propagation graphs, we have two
concerns. Firstly, there are many propagation graphs, but we can only
show a few simultaneously on the screen. Secondly, we need to com-



pare propagation graphs. We design the graph list view to fulfil the
above requirements.

To reduce the number of propagation graphs to show, we use fil-
tering and sorting. We have a topology filter in the graph projection
view (Section 5.3), a spatial filter in the spatial view (Section 5.1), and
five histogram filters for time and size in the attribute filter view (Sec-
tion 5.5). We only show propagation graphs satisfying these filters.
When there are still too many graphs, we sort them and only show the
top N graphs, usually with N ∈ [10,50]. The sorting can be based on
the number of events, the time span, or the total distance.

To compare propagation graphs, we make a small multiple inter-
face, as illustrated in Figure 1(c). It shows the propagation graphs as
icons. These icons are arranged in a matrix style. Each icon represents
one graph, and shows its spatial propagation path, temporal informa-
tion, and the three size measurements. Color of the propagation path
shows the congestion time at each location, with red being 4 hours and
orange being 10 min. When users highlight a graph icon, the path of
this graph will be shown in detail in the spatial view. A more detailed
design of the graph icon is illustrated in Figure 6. The icon design
and the matrix layout together allow side by side comparison of prop-
agation graphs. However, in the matrix layout, two graphs that are far
apart, are hard to compare. Therefore, we allow user to pin interesting
graphs. Pinned graphs are listed separately as icons below the original
icon matrix, which facilitates comparison, and allows reviewing at any
time. Besides pinning, we allow users to select one graph and high-
light all graphs that are spatially similar. The search for these similar
graphs is limited to the visible top N graphs. The selected graph is put
at the front of the graph list, while similar graphs are put immediately
behind it, in decreasing similarity order. Icons for the selected graphs
and its similar graphs have a red frame. We define the spatial similarity
of two graphs, as the Jaccard coefficient [2] of their set of dWays.
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Fig. 6. The graph icon shows concise information of a propagation
graph, including the start/end time, the spatial propagation path, the size
in terms of the number of events, the time span, and the total distance.
It also indicates the highlight state and pin state of the graph.

5.3 Graph Projection View

Also focusing on the propagation graph level, the graph projection
view summarizes the topological information of the path of all graphs.
However, the large number of graphs makes projection difficult. Our
basic idea is to first divide graphs in topological clusters, then to
project the clusters. To make clusters, we perform a topology pre-
serving simplification on the path of each graph, by removing all
mid-dWays, i.e. the dWays with both in-degree and out-degree be-
ing one. Then we calculate a feature vector for each simplified path
�I0,O0, I1,O1, ..., In,On�, where Ii is the number of nodes with in-
degree i, Oi is the number of nodes with out-degree i, and n is the
maximum of all in-degrees and out-degrees. Each dimension of the
feature vector is normalized separately. Graphs with identical feature
vectors are put in the same cluster. In our case, n = 4, and we get
212 clusters. For cluster projection, we use MDS [52]. The distance
between two clusters is defined as the Euclidean distance between the
feature vectors. The interface is shown in Figure 1(e). Each cluster
is rendered as a point, with color indicating the number of graphs it
contains. Darker means more graphs. Mouse hover shows the exact
number of graphs, with a rendering of the graph using the Sugiyama
layout [44] of the OGDF library [3]. The propagation direction is from
top to bottom. Users can also draw a lasso to filter graphs in this view.

5.4 Spatial View

We require an overview of the traffic jams on a city level and a de-
tailed inspection of propagation graphs. These tasks are achieved in
the spatial view. See Figure 1(a).
The spatial density of a traffic jam is used to give a city-level

overview. This density is defined on each dWay as the total conges-
tion time on that dWay. We use color to encode the density: A dark
red color means the dWay is most congested; a red color means less
congested, followed by orange. A gray color represents no congestion.
The path of the highlighted propagation graph, is rendered as a flow

map in black. We are especially concerned about the topology of the
path, e.g. the start/end points and merging/branching points. The start
points are the dWays that “creates” the jams, while the end points are
the dWays that “absorb” the jams. In branching points, congestion in
one dWay propagates to at least two dWays. In merging points, con-
gestion in one dWay results from at least two dWays. To highlight
such features, we use black circles for the start points, and black ar-
rows for the end points. The branching/merging points can be simply
discovered by looking at the path. Besides watching the static path,
users can also play an animation of the propagation.
We allow users to check the speed and event information of multiple

dWays, by embedding mini road speed views inside the spatial view. A
green stippled line segment connects the mini road speed view and the
dWay it represents. Users can create, move and delete the mini road
speed views. Aligning them side by side allows a user to compare the
speed patterns of roads.
Users can draw a rubber-band rectangle to set a spatial filter for the

graphs. This is indicated by a green rectangle in Figure 1(a). They can
also play trajectory animations. In this way, they can roughly validate
the detected traffic jams, and make detailed observations.

5.5 Multi-faceted Filter View

We provide five interactive histograms to make a dynamic query on
the propagation graphs. This is illustrated in Figure 1(d). The two his-
tograms on the bottom show the temporal distribution of traffic jams.
One by dates, and one by day times. On the top left corner of the date
histogram, there are two buttons, allowing the users to observe data
only in weekdays or weekends. The three histograms on top show the
size distributions in terms of number of events, time span, and total
distance. On each of the histograms, users can select a range. The five
range queries on the histograms, plus the spatial query in the spatial
view, and the topological filter in the graph projection view, form the
whole filtering of our system. This filtering mechanism is a simplifi-
cation of cross filtering [50]. Only propagation graphs satisfying all
filters will be selected, and listed in the graph list view.
We provide two visual modes for the histograms. In absolute mode

(Figure 7(a)), we only show the statistics of data passing the filter, in
orange. The height of the bins is in a linear scale. In relative mode
(Figure 7(b)), we also show the statistics of all the data as a gray back-
ground. As the scale of all data and data passing the filter may differ
a lot, the height of bins is in logarithmic scale. We mark the informa-
tion of the highlighted propagation graph on the histograms. Figure 7
shows the mark in the date histogram (as a black triangle) and in the
time histogram (as a time range covered by stipple lines).

���

���

Fig. 7. Date and time histogram in absolute mode (a) and relative
mode (b). The temporal information of the highlighted propagation
graph is marked.

6 VISUALIZATION RESULTS AND CASE STUDY

Our system provides users with visual insights on complex traffic data
from multiple perspectives. The following cases demonstrate the ca-
pabilities and effectiveness of our visual analysis system.
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Fig. 8. (a) In Beijing, different roads have different traffic patterns. (b)
The main road in the North 3rd Ring is regularly congested at week-
days in the morning and afternoon. (c) This road is beside two primary
schools, it is also congested at weekdays, but usually before 7:30am,
when parents send their children to school. (d,e) The two directions of
the tunnel just outside Beijing West Station congest at different times,
one only in the morning, one only in the afternoon. (f) The road besides
the new National Exhibition Center at Shunyi is congested when there
are exhibitions. (g) The Airport Express is occasionally congested by
unpredictable incidents. (h) The road to the east of Beijing Worker’s
Stadium is regularly congested at the night of Friday and Saturday.
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Fig. 9. Traffic congestion propagation and speed of road segments. (a)
Congestion propagation in Lianhua Bridge on the West 3rd Ring of Bei-
jing. (b) Congestion propagation in the Badaling highway intersection
on the North 5th Ring of Beijing, where the red lines indicates the con-
nection points of road segments. (c) Speed of road segments in (a). (d)
Speed of road segments in (b).
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Fig. 10. Traffic congestion propagation graph pattern in Wanquanhe
bridge. (a) Propagations in the morning of each day: blank glyph for no
congestion propagation on that day, no glyph for missing data. (a inset)
Road network around Wangquanhe bridge. (b) Speed view of the green
road segment on the bridge.



6.1 Case 1. Road Segment Level Exploration and Analysis

With the road speed view, our system provides users with an aggre-
gated visualization of the traffic speed on a road segment. Figure 8
shows seven road segments (dWays) in Beijing. Each road speed view
gives a clear visual summary of the traffic congestion patterns of that
segment. We can observe that for most roads, the traffic starts to be vis-
ible around early morning 6:00 am, and most weekdays suffer morn-
ing and afternoon traffic peaks, while the traffic on weekends is much
lighter. Figure 8(b) shows a road segment of the North 3rd Ring with
clearly a morning peak, when people go to work, and an evening peak,
when people go back home. For roads close to a primary school, the
morning peak comes earlier, as parents bring their children to school
before they go to work (Figure 8(c)). Figures 8(d) and (e), show the
two opposite directions of a road with very different behaviors. The
differences can be contributed to the directional traffic from home to
work. Figure 8(f) shows another pattern that is heavily influenced by
local activities. The road is south of a large Exhibition Center, and
congests only at days with exhibitions. While most of the congestions
mentioned above have some regularity and predictability, some traf-
fic jams occur more randomly. The road segment on the Airport Ex-
press (Figure 8(g)) usually has smooth traffic, but can occasionally be
congested by incidents. The road shown in Figure 8(h) is east of Bei-
jing Worker’s Stadium, and hosts many bars. It has more traffic load
throughout the night. Friday and Saturday have earlier heavy traffic in
the evening, since people visit the bars earlier during weekends.

6.2 Case 2. Visual Propagation Graph Analysis

By filtering on temporal, spatial and size properties of traffic conges-
tion propagation, users can explore different traffic jam propagation
graphs with our visual interface. The detailed propagation can be ex-
amined in a road speed view. Figures 9(a) and (b) show two different
traffic congestion propagations. Figures 9(c) and (d) show their road
speed. Congestion propagation in Figures 9(a) happened on a road
named Lianhua Bridge on the west 3rd Ring of Beijing. Place A on
the road was struck by a traffic congestion first. With a clear time de-
lay segments B and C become, almost simultaneously, congested too.
Figure 9(b) presents a more complex traffic congestion propagation. It
happened at the Badaling highway intersection on the north 5th Ring
of Beijing. This propagation was caused by two sources: D and H.
Firstly H was congested. Then congestions in I, J, and K occurred
gradually with some delay. When D became congested, E, a branch of
F was affected badly. At the same time, F became congested. When H
was free from congestion, I to K were all free from congestion, too. E
continued to be congested until D was relieved from traffic jams.

6.3 Case 3. Congestion Propagation Pattern Exploration

We enables users to compare traffic congestion propagation graphs in
an area at different times. For example, Wanquanhe Bridge is located
at the north-west corner of the 4th Ring in Beijing; see the right-bottom
of Figure 10(a). Figure 10(b) shows the speed of a road segment on
this bridge. Except for missing data on March 18, a strong periodicity
is presented throughout the whole data set. On every weekday, traffic
congestion occurs from about 7 a.m. till 10 a.m. In weekends, the
traffic jam in the morning was replaced by one in the afternoon. To
study propagations in the morning of weekdays in detail, we list them
day by day, as shown in Figure 10(a). We found that all these conges-
tions originated from the road around Zhongguancun Science Park, an
area with many high-tech enterprises. Although the traffic congestion
propagation graphs differ by some branches, the main bodies of these
graphs are the same, firstly from east to west and then to the south.

7 DISCUSSION

The preprocessing steps in our system require many parameters. They
are important to produce usable traffic jam data for further visual ex-
ploration. However, finding proper settings for these parameters is not
trivial. Currently, we do so based on analysis of distributions, on expe-
rience, and on comparison to manually labelled data. We also perform
sensitivity analysis on these parameters. Additionally, our visual in-
terface gives users visual feedback of the extracted traffic jam data.

When users are not satisfied with the results, they can redo the last two
steps of the preprocessing with different parameters. This takes ap-
proximately one minute for the Beijing taxi data on our workstation.

Our work focuses on event analysis, and uses animation of moving
objects to visually evaluate the detected traffic jams. Further analysis
in space and time is possible. For instance, by clustering the road
segments based on their speed change over time, or by clustering the
time bins based on the spatial distribution of speed at that time. The
space-in-time and time-in-space SOM [8] provides such techniques.
We will consider it in the future.

Our work studies the causal relationship, the propagation of traffic
jams. However, studying the correlation of traffic conditions is also
important. This can be done using PGMs. PGMs provide the possibil-
ity to predict the traffic condition in different roads at different times,
based on current observations. It is also able to model negative cor-
relations, which is obviously interesting. We consider incorporate the
PGMs in our visual analysis.

In intelligent transportation systems, pre-warning before accidents
is more important than post-accident response, since it might help to
save lives and costs. As for traffic jams, a traveller may expect that
a route plan become more intelligent and adaptive. This obviously
heavily depends on the prediction performance for traffic jams. Our
current work is more on post-jam analysis. However, we plan to extend
our system to include real-time prediction.

Finally, it is challenging to summarize large number of propagation
graphs. It is especially difficult to clearly put them in semantic clus-
ters, simultaneously considering the spatial, temporal, size and topol-
ogy aspects. Our system treats these aspects separately, and gives an
overview in terms of each of them.

8 CONCLUSION AND FUTURE WORK

In this work, we have presented an interactive visual analysis system
to analyze traffic jams in a realistic large scale road network. We use
24 days of taxi GPS trajectories in Beijing and a corresponding street
network from OpenStreetMap. In a data driven approach we clean
the GPS trajectories from sensor errors and fix apparent errors in the
road network. With the cleaned data we can accurately map the driv-
ing trajectories to the road network and subsequently, compute road
speeds. After estimating free flow speed on each road segment, we
automatically detect traffic jam events at roads based on relative low-
road-speed detection. The concatenation of these events in propaga-
tion graphs shows how a traffic jam propagates both in space to adja-
cent roads and in time. Based on the automatic computing results, we
then build a visual interface for interactive exploration of the detected
traffic jam information both in detail on a road segment as well as on
a higher level in a spatial view on a map and in a small multiples view
with propagation graphs. We support the analysis by efficient filtering
of space, time, size and topology, and providing structured visualiza-
tions of the graphs through sorting by size and similarity. Finally, we
provide a number of case studies that demonstrate the effectiveness of
our system. Our system can provide users with insights from multiple
levels and perspectives.

Our future work includes improving the traffic jam model, support
more analysis tasks, and enable real-time traffic prediction. We will
also try better visual encodings for the propagation graphs. We con-
sider to make a formal evaluation of our system.
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APPENDICES

Our preprocessing steps have many parameters. Correctly setting them
is crucial, but not trivial. We discuss the parameter settings below.



Table 1. Parameter settings for GPS data cleaning filters. The remaining filters F1, F2, and F7, have R values 17%, 0.08%, and 13%, respectively.

Filter R% Value Sensitivity Explanation

F3 0.42% 90km/h 0.0008% per 1km/h Speed limits are between 30 to 120km/h. However, splitting high speed segments does not affect traffic jam extraction.

F4 3.0% 2km 0.2% per 0.1km It corresponds to at least 3 dWays when matched to the road network.

F5 3.3% 10min 0.6% per 1min It corresponds to 20 missing sampling points.

F6 62%
50m 0.3% per 10m It covers 98.7% of the GPS drift errors, assuming it obeys a Gaussian distribution with standard deviation = 20m [40].

30min 0.2% per 1min We are not aware of traffic jams in Beijing, in which vehicles are completely stuck for over 30min.

F8 20%
5 points 1% per point By rendering trajectories with less than 5 points, we find that they can not be convincingly matched to the road network.

500m 0.1% per 100m Same as above.

A GPS Data Cleaning

Our GPS data cleaning relies on a set of filters. All of them try to
remove erroneous or unusable data. An appropriate parameter setting
aims to strike a balance between the percentage R of points removed
and the noise level. We perform sensitivity analysis on most of them,
showing how much more/less data will be removed, if the parameters
change slightly. We use the One-at-a-time strategy [4], and calculate
the partial derivative of R for each parameter. We summarize the filter
parameters in Table 1. The current parameter setting removes 74.5%
of the data, most of which are stops removed by F6 and F7.

B Map Matching

The map matching result is analysed by comparison to manually la-
belled data, with Mao et al.’s technique [32]. We randomly choose
500 trajectories from our dataset, containing 14,632 sampling points
and match them automatically. After manual correction with Un-
match being allowed, we consider the result as the “ground truth”.
The map matching accuracy based on a “ground truth” is defined as:
Accuracy = ∑n

i=1 |Mi ∩ Ti|/∑n
i=1 |Mi ∪ Ti|, where n is the number of

trajectories, andMi and Ti are the sets of directed ways for the i-th tra-
jectory in the map matching result and the ground truth, respectively.

We choose 400 of the 500 trajectories to estimate the best pa-
rameters: candidate search radius r, candidate number k, normal
distribution standard deviation σ (we assume the mean µ is zero),
and our minimum transmission probability Δ. The original ST-
matching paper [30] recommended r = 50m, k = 5, σ = 20m, and
no Δ which is equivalent to Δ = 0.0. Testing the combinations with
r ∈ {20m,50m,100m}, k ∈ {3,5,10}, σ ∈ {10m,20m,50m} and Δ ∈
{0.0,0.2,0.4,0.6}, gave accuracy ranging from 81.6% to 91.7%. The
best of these combinations (r = 50m, k = 5, σ = 20m, Δ = 0.2) gives
a 92.6% accuracy on the remaining 100 trajectories, and is used by us
to do the map matching. As a result, 5% of the sampling points and
7% of trajectory segments are unmatched.

C Road Speed Calculation

The setting of parameter min support is a balance between the confi-
dence level of the prediction and the number of speed estimates (See
Figure 11). If users want accurate data, then they choose a high
value. If they want more data, a low value. Our default setting is
min support = 5. Under this setting, given a ±4mph error bound, the
theoretical confidence level [33] of calculated speed in freeways are
guaranteed to be above 58% under all conditions, and 85% with nor-
mal traffic volume. However, the confidence level in arteries are quite
low (44% and 72%). Users may change this setting. For each dWay,
we define a Coverage value, which is the ratio of time bins with valid
speed, i.e. support ≥ min support. Figure 12 shows the result.

D Traffic Jam detection

The traffic jam detection result is also analysed by comparing with
manually labelled data. We randomly select 50 freeway road segments
(dWays) from the road network, within the 4th Ring of Beijing. We
play an animation of one day traffic data, and manually label the con-
gested time bins. This labelling is a bit subjective, since sometimes
the road condition is between congestion and free flow, and some-
times the number of trajectories on that road is insufficient. In these
situations, the results depend on human judgment. Still, we assume

the labelled data is a “ground truth”, based on which we calculate an
accuracy: Accuracy=∑n

i=1 |Si∩Li|/∑n
i=1 |Si∪Li|, where n is the num-

ber of dWays, Si is the set of time bins detected as congested for the
i-th dWay, and Li is the set of time bins labelled as congested in the
“ground truth” for the i-th dWay.
We use the labelled data to estimate the best parameters, including

the speed percentage of free flow speed F , and of congestion speed
C. We have tested F from 100 to 70 and C from 60 to 30, both at
an interval of 5. The results are shown in Figure 13. Although the
combination of F = 75,C = 50 gives the highest accuracy, namely
79.7%, it is not stable. We choose a stable combination F = 85,C =
45, which gives 76.3% accuracy.
The labelling provides a means to incorporate human preference in

the traffic jam detection. For example, when users want only definite
and serious traffic jams, they can relabel the 50 freeways accordingly,
then re-estimate the parameters, and redo the traffic jam detection.

Fig. 11. Trade off of min support selection. (left) The confidence level
of speed calculation with different min support values, under different
road conditions: freeway(n) and artery(n) with normal traffic volume,
freeway(a) and artery(a) with very low/high traffic volume. (right) The
relative number of speed estimation with different min support.

Fig. 12. The coverage of dWays in our data.

Fig. 13. Accuracy of event detection under different parameter settings.
(left) Accuracy vs. F, under different C. (right) Accuracy vs. C, under
different F .
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