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Modeling Just Noticeable Differences in Charts

Min Lu, Joel Lanir, Chufeng Wang, Yucong Yao, Wen Zhang, Oliver Deussen, and Hui Huang

Fig. 1. Four charts of the same dataset, but with different pairs below the Just Noticeable Difference (JND) threshold. From left to right:
a bar chart with no pairs below JND, the difference between all pairs of bars in the graph is noticeable; with a different order, there is a
pair of bars below JND (A-B); two pairs of indistinguishable fans are detected in the pie chart (A-B and C-F); three pairs of circles are
detected as not distinguishable in the bubble chart (A-B, C-F and D-E).

Abstract—One of the fundamental tasks in visualization is to compare two or more visual elements. However, it is often difficult to
visually differentiate graphical elements encoding a small difference in value, such as the heights of similar bars in bar chart or angles
of similar sections in pie chart. Perceptual laws can be used in order to model when and how we perceive this difference. In this
work, we model the perception of Just Noticeable Differences (JNDs), the minimum difference in visual attributes that allow faithfully
comparing similar elements, in charts. Specifically, we explore the relation between JNDs and two major visual variables: the intensity
of visual elements and the distance between them, and study it in three charts: bar chart, pie chart and bubble chart. Through an
empirical study, we identify main effects on JND for distance in bar charts, intensity in pie charts, and both distance and intensity in
bubble charts. By fitting a linear mixed effects model, we model JND and find that JND grows as the exponential function of variables.
We highlight several usage scenarios that make use of the JND modeling in which elements below the fitted JND are detected and
enhanced with secondary visual cues for better discrimination.

Index Terms—Visual perception, Charts, Just noticeable difference, Modeling.

1 INTRODUCTION

Charts have been used for the presentation of quantitative information
for decades. Quantitative values are mapped to visual attributes such
as position, length, or angle in a common scale, by which viewers
can intuitively compare and understand the data elements. One of the
basic tasks in the reading of charts is to compare two or more visual
elements. In a basic bar chart, for example, the height of bars represents
the quantitative measure of the element. Positioning bars aligned, side
by side, allows for a quick comparison, where one can easily tell the
relative relations among the bars. Still, a basic problem in bar chart is
that it remains difficult to tell apart close quantities. It is difficult to
distinguish between bars with similar heights, or to know when bars
represent exactly the same quantity (e.g., the bars ‘A’ and ‘B’ in the
second bar chart of Figure 1). This pitfall is even more apparent in other
common charts, such as bubble or pie charts in Figure 1. This weakness
in perceiving the noticeable difference in chart elements, motivates this
work.

Comparison of visual elements that have a small difference between
them, relates to the concept of Just Noticeable Difference (JND) [15].
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JND is a pyschophysical concept defined as the minimum level a stimu-
lus that needs to be changed in order for people to be able to perceive it.
The well-known Weber’s law claims that the noticeable difference in a
stimulus is proportional to the intensity of the stimulus. For visual stim-
uli, this usually translates into the length or size of the object. However,
research in visualization shows that the perception and discrimination
of objects in charts relates not only to the targeted objects themselves,
but also to the whole configuration of the visualization, which may
include contextual factors such as the spatial setting of the charts (e.g.,
aligned or stacked bar chart) [7], neighbourhood elements [43], scale
of the chart [36] and more.

Inspired by these findings, this work examines the JND within the
context of visualization charts, and models it as a function of both the
intensity of the objects (e.g., their height or size), following Weber’s
law, and the distance between them. We examine three conventional
charts: bar charts, bubble charts, and pie charts, measuring JNDs for
these charts through a series of discrimination tests performed by 28
participants. As a result, for each chart, we first identify the main
visual variables that have a significant effect on the JND, showing that
distance affects the bar chart, intensity affects the pie chart and both
distance and intensity affect the bubble chart. Then, we apply mixed
effects models to quantify JNDs depends on these variables for the
three chart types. Finally, we show how using such a fitted model, we
are able to identify and enhance groups of elements with values below
the JND threshold, that otherwise for most users, would be difficult to
perceptually discriminate.

Thus, the key contributions of this paper are as follows: First, we
identify the effect that intensity and distance have on the JND in three
common charts: bar chart, pie chart and bubble chart. Second, we
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model this effect by a mixed effects model that can be used to predict
the JND in these three charts. Third, we demonstrate how this model
can be applied for visually enhancing the perception of barely visible
differences. Finally, the dataset and code from our experiments is
released as open source for further JND related research.

2 JUST NOTICEABLE DIFFERENCE

The Just Noticeable Difference (JND), sometimes also called the differ-
ence threshold, is the minimum amount by which a stimulus intensity
must be changed to be noticeable. For example, for sound, the JND
would be the smallest change in volume that a person could sense.

How well humans distinguish properties of different stimuli has been
formally studied since the middle of the 19th century. JNDs were first
investigated by the German psycho-physiologist Ernst Heinrich Weber
in 1834 in a series of experiments. Gustav Fechner, Weber’s student,
formulated the results into Weber’s Law which states that the size of
the Just Noticeable Difference is a constant proportion of the original
stimulus [3]. In its classic version, it is modeled as δ (a) = ca, where
a is the intensity of elements, δ (a) is the JND, and c is the constant
Weber fraction. Gustav Fechner further formulated Fechner’s Law [28],
in which it is stated that the stimulus’s perceived strength is propor-
tional to the logarithm of the objective stimulus strength. Subsequently,
researchers in psychophysics elaborated Weber-Fechner Laws for var-
ious circumstances, such as visual discrimination of brightness [15],
orientation [39] and more.

Weber and Fechner’s work focused mostly on differences in weight
and light intensity. However subsequent studies found mixed support
for either Weber’s law or Fechner’s law with different types of stimuli
[17]. A deviation of Fechner’s Law was proposed by Stevens, who
stated that the sensation is better modeled by a power law such as,
S = cIα , where S is the sensation magnitude, I is the stimulus intensity
and α depends on the sensory modality. Stevens showed that different
stimuli such as brightness and loudness are better modelled using a
power law, and proceeded in calculating exponent values for various
stimuli [35]. Still, critics argue about the validity of Stevens’s law,
also saying that the power law can be deduced mathematically from
Fechner’s logarithm function [26].

Looking at how Weber’s law applies to different visual elements, the
lengths of lines was reported to follow Weber’s law already in Weber’s
initial report and was further discussed by Fechner who conducted an
experiment dealing with the discriminability of distances between two
points [9]. This was also confirmed by further studies [29]. Other works
claimed that a power law, similar to what Stevens has modelled was
found to best fit judgments of perceiving the differences in the lengths
of lines [13]. Area perception was also found to follow Stevens’s law,
by Augustin and Roscher, who looked at perceived differences in area
of squares [1]. However, only a few studies have examined JND in the
context of visualizations. We aim to fill this gap, and examine JND
within three conventional visualization charts.

3 RELATED WORK

Next, we survey works related to the understanding of charts and
specifically, comparison tasks in charts, followed by a discussion of
works that deal with perception modeling in information visualization.

3.1 Visual Comparison
Visual comparison is a fundamental task in visual analysis [4, 11, 38].
Several studies looked at how the performance of visual comparisons
is affected by various contextual factors. Talbot et al. [37] investigate
the performance of estimating relative sizes (i.e., the relative height
of a shorter bar compared to a taller bar) as a function of the distance
between them and surrounding distractors. Their results show that the
larger the separation is between bars, the more difficult it is to compare
between their heights. Regarding distractors (i.e., height of bars sepa-
rating the targets), the results of the study were ambiguous, however
other studies have managed to find and show that the perception of a
bar is affected by its neighbours (neighbourhood effect) [43].

Other studies looked at different factors that may affect comparison
tasks. Srinivasan et al. [34] evaluated the usefulness of overlays in such

tasks for four variants of bar charts and report that charts with difference
overlays facilitate a wider range of comparison tasks. Kim et al. [21]
study how positive and negative visual framing within charts affects the
feedback from users (framing effect). Going beyond 2D charts, Zacks
et al. [42] especially looked at relative comparisons among 3D bars.
Our work is in line with the above findings, but focuses on perceptual
modelling of human performance in a comparison task, distinguishing
similar visual elements that encode nearby values.

3.2 Perception Modeling in Visualization

A great deal of research has been conducted studying the visual percep-
tion of different types of visual channels and their impact on visualiza-
tions. The seminal work of Cleveland and McGill [6] provides an initial
framework for the ordering of visual variables, comparing elementary
perceptual tasks such as position on a common and non-aligned scale,
length, direction, angle and more. Later, Mackinlay [27] extended the
study to non-quantitative perception tasks, evaluating the performance
of visual variables in encoding ordinal and nominal information. More
recently, Heer and Bostock [16] performed an approximate replication
of Cleveland and McGill’s study using crowdsourcing. They confirmed
the relative rankings among the different types of visual variables.

Looking to model perception, researchers measure and model how
viewers perceive visual objects within the context of an entire chart
or the context of different tasks. Many such studies focused on user
perception of scatterplots. Looking at high-level perception tasks such
as the detection of correlation, Rensink and Baldridge [30] modelled
human perception of correlations in scatterplots finding that it is con-
gruous with Weber’s and Fechner’s law. Gleicher et al. [12] explored
mean value judgements in multi-class scatterplots and found that view-
ers can efficiently make comparative mean judgements across a variety
of conditions and encodings. Harrison et al. [14] extended the study of
scatterplots to examine the overall perception of correlations between
two variables. Following this work, Kay and Heer [20] provide a sec-
ondary analysis of the data by Harrison et al., but consider individual
differences in the precision of estimations. Later on, Yang et al. [41]
modulate not only correlation values, but also candidate visual features
that best align with participants’ judgments. Looking at the apparent
order in the data, Chung et al. [5] also employed a crowdsourcing
study to investigate the perception of order in a sequence of elements
with different visual channels. Finally, Hughes [19] estimates Weber’s
constant for 2D and 3D bar charts and draws the conclusion that the
JND for 3D charts would be larger than for 2D charts. However, in his
experiment, bar charts only consisted of two targeted bars.

Our work is based on the above in-depth studies for visual percep-
tion, but aims at modelling JND for comparison tasks of visual items,
especially studying when the difference between items cannot be per-
ceived. We examine this with three different chart types, and study
not only the effect that the stimuli size (e.g., the height of the bar in a
bar chart) might have on the JND, but also the distance between the
comparable items in the chart.

4 EXPERIMENT

We aim to analyze the perception of JND in chart elements in order
to understand (and possibly aid) how people compare visual elements
that have close quantities. In particular, we study three popular charts:
bar charts, pie charts and bubble charts. In standard psychophysical
experiments, targets are presented alone, without any context. In our
case, the JND of targeted visual elements are analyzed in the context of
element comparison tasks within a chart. We focus on two variables
that may affect the perception of comparison:

Object Intensity. Previous works in psychophysics demonstrate
that the object intensity has a significant effect on the JND and can be
quantified by Weber’s Law: the increment noticeable intensity thresh-
old is proportional to the object’s intensity. For example, in a noisy
environment, people might shout to be heard while a whisper works in
a quiet room. In our experiment, object intensity specifically refers to
visual cue that encodes the data, i.e., height of bar in bar charts, radius
of circle in bubble charts, and angle of fan in pie charts.
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Separation Distance. In a visualization, the JND for items of a
chart may be affected by other contextual factors as well. We focus
here on distance between elements because distance was shown to
be one of the most dominant factors affecting element comparison in
charts [37]. Separation distance, is measured by the Euclidean distance
between two bars in a bar chart, or two circles in a bubble chart. For pie
charts, the separation distance is modulated by the angular difference
between two targeted fans. While other contextual factors such as color
or neighboring items may also affect JND (i.e., a small, yet existent
neighborhood effect of close-by bars was found in bar charts [43])),
we focus on distance as it is strongly supported by existing literature
and seems to have the highest potential to affect JNDs.

When performing our experiments, we follow a custom methodology
of JND examination by using the method of Constant Stimuli. It studies
when and how similar elements with equally increased or decreased
differences can be distinguished.

Fig. 2. Experiment Interface for the Bar Chart: ‘Which bar is taller, A or
B?”

4.1 Conditions
We examine three types of charts in our experiments: bar charts, pie
charts and bubble charts (see Fig. 1). For each of them, we vary
two independent variables: object intensity and separation distance,
each having 5 levels. Each experimental condition refers to a unique
combination of separation distance and object intensity under which
JNDs are measured. Next, we describe the configuration of the stimuli
in each of the three chart types. Note that all stimuli are measured in
pixels in a controlled display environment (see Section 4.3).

Bar Chart All bar charts were generated with the same configura-
tion: 10 bars horizontally aligned, each bar is 33 pixel in width, the
horizontal gap between bars is fixed to 9 pixels. In each trial, two
bars were targeted to be compared, while the rest of eight bars were
generated with random height.

The separation distance of the two targeted bars was set to five levels,
according to the number of bars between them, N, where N is either 0,
2, 4, 6, or 8. That is, the distance between the target bars varied from 9
pixels to 345 pixels on 5 different samples. Object intensity (the height
of standard stimuli bar in each trial) was sampled at 5 levels, between
50 pixels to 250 pixels, 50 pixels per level. Thus, 25 conditions in total
were generated.

Pie Chart Pie charts were also generated with a common configura-
tion: 8 fans, composing a pie with a radius of 135 pixel. In each trial,
the two targeted fans were set at a certain angle and angular distance,
then the remaining six fans were generated at a random angle, but in a
way that a whole pie chart was generated.

For the two targeted fans, the angle of the standard stimuli was
sampled at 5 levels, from 10 to 130 degree, with steps of 30 degrees.
The separation distance (smaller angle between the two fans) was set to
5 levels from 0 to 100 degrees. Due to the constraint of not exceeding

360 degrees, three conditions were sorted out as being invalid (one
condition with fans of 100 degree but 100 degree separation, and two
conditions with fans of 130 degree, but 80 or 100 degree separated),
resulting in a total of 22 conditions.

Bubble Chart Bubble charts were generated with a common config-
uration: 10 circles, placed on a canvas of 500 pixel width and 400 pixel
height. In each trial, the two targeted circles were set first with having a
certain radius and distance between them, then the rest of eight circles
were generated at random sizes and positions without overlap.

The radius of the standard stimuli circle (one of the two target circles)
was sampled at 5 levels, from 10 pixel to 50 pixel. The distance between
the two circles was sampled at 5 levels, from 0 pixels to 200 pixel, with
steps of 50 pixels. Note that with zero pixel distance the two circles are
tangent. In total, 25 conditions were rendered.

4.2 JND Measurement
For each condition, we followed the classic JND experimental method-
ology using the method of Constant Stimuli. In this method, a number
of stimulus values that are likely to encompass the JND case are chosen
and presented in a quasi-random order to observers. For each stimulus
presentation, the observer reports whether its intensity is ‘stronger’
(i.e., ‘taller’ in the case of bar chart, ‘larger’ in bubble chart and pie
chart) than the standard stimulus. Then the proportion of ‘stronger’
responses is calculated for each stimulus level. A so-called Psycho-
metric Function is constructed by taking the stimulus intensity as the
x-axis and proportion of ‘stronger’ as y-axis (see Figure 3(left)) [8].
JND is defined as the difference between two x-axis values at which
the function crosses 0.5 and 0.75 [24].

Fig. 3. JND Calculation: (left) a normal fitted Psychometric Function
example with a sigmoidal shape; (right) an ill-fitted example in bar chart
(explained in Section 5) , which is caused by a severe disorder in the
data (as the height of comparison stimuli increased, the participant didn’t
consistently report more answers that they were taller than the standard
stimulus).

For example, if we look at a bar chart in which there are two sepa-
rating bars in a distance (e.g., in a distance of 83 pixels) and an object
intensity of 100 pixel, we generate a sequence of trials in which the
height of the standard stimulus bar (denoted by ’A’) is fixed at 100 pix-
els, while the height of the comparison stimulus (denoted by ’B’) varies
within a certain range HeightB = [HeightA− εlower,HeightA + εupper].
The range is bounded by two values, εlower and εupper. The lower
bound is smaller than the standard stimuli which can easily be distin-
guished from it, the upper bound is larger than the standard stimuli
and can also easily be distinguished from it. We now evenly sample
10 levels within this range and repeat 10 trials at each level. For ex-
ample, in Fig. 3(left), (εlower,εupper) is set to (−2,2) pixels, with ten
comparison stimuli evenly sampled in-between. For each comparison,
the proportion of responses that stimulus is identified ‘taller’ or ‘larger’
than the standard stimulus is computed and then Psychometric Function
is constructed. The JND is computed as the intensity difference at the
proportion of 0.5 and 0.75.

Overall, each participant performed 2500 trials with bar charts (25
conditions x 10 comparisons x 10 responses), 2200 trials with pie charts
(22 conditions x 10 comparisons x 10 responses), and 2500 trials with
bubble charts (25 conditions x 10 comparisons x 10 responses).

In order to set the bounds for all conditions of all three charts,
for each condition, one author of this work proposed a pair of
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Fig. 4. Distribution of JND according to the two independent variables: (left) in bar chart, a strong positive correlation can be observed between JND
and the distance between bars, while a weak to non-existent correlation between JND and the height of bars; (middle) both distance and radius of
circles show positive correlation with JND in bubble chart; (right) in pie chart, JND shows a strong correlation to the angles of fans to be compared,
while weak correlation with angular distance.

(εlower,εupper), e.g., (-5, 5) pixels. This value was calibrated by a
second author, until the differences by the lower bound and upper
bound were easily perceived.

4.3 Procedure
We recruited 28 participants from a local university, 15 females and
13 males, with an average age of 21 years (range 19-25), 22 out of
the 28 participants had a major in science or engineering, six partic-
ipants had a major in humanities and social science. Five of them
were post graduate students, the rest were undergraduates. Twenty-two
participants reported themselves not having previous experiences in
visual discrimination tasks or any professional knowledge in visual-
ization, six participants self-reported with a medium or pretty good
background in visualization. All participants reported having normal
or corrected-to-normal visual acuity as well as not having any type of
color-blindness.

We divided the experiment into three sessions of different chart types.
The 28 participants got tested in all of the three sessions. Each partici-
pant performed the tests independently in each session. The participant
was asked to sit in front of a personal computer with a 14-inch display
screen (12.2 ′′ x 6.86 ′′ display size, 157 pixels per inch, 0.161mm dot
pitch), at a distance of about 45cm from the screen. The testing inter-
face was presented on a full-screen display (Figure 2). At the beginning
of the first session, we collected demographic information, including
age, gender, academic field, academic level, and experience in data vi-
sualization. Then some basic instructions were given. Participants were
asked to provide the best answer possible according to their immediate
perception. Participants were encouraged to take a break whenever they
got tired.

Each participant first went through a short practice block with several
trials to get acquainted with the task. Then the formal trials began. In
each trial, a chart was presented to the participant (bar, pie or bubble)
on which two stimuli were presented. Fig. 2 shows an example of
the user interface of one trial. The experiment had only one type of
task: Which object is taller/larger? with two-alternative choices A, and
B. Participants were not returned feedback about how they did well
in each trial. The participants were notified about their progress on
the top-right corner of the interface. Anytime during the experiment,
the participants could take a break and later resume the test. For each
trial, the response was recorded. Each session took around one hour to

complete, averagely 1.5 second every trial. All trials were presented at
random order, within each trial left and right order of standard stimulus
and comparison stimulus was also randomized.

5 MODELING

Responses from all 28 participants were collected. From the responses
to each of the conditions and each participant, a psychometric function
was fitted by using Generalized Linear Model with logit link function,
from which the JND value can be estimated. All raw data from the
experiment, the calculated JNDs, and analysis codes are provided online
https://github.com/deardeer/JND-in-Charts.

Within the resulting values, several ill-fitted JNDs were found. As
exemplified in Fig. 3(right), ill-fitted JNDs are cases in which the
proportion of the comparison stimulus taller/larger than the standard
stimulus changes dramatically instead of consistently increasing as the
intensity of the comparison stimulus increase. Therefore we removed
JNDs with extremely large or extremely small values. This way, we
excluded six outliers out of 700 JNDs (28 participants x 25 conditions)
in bar charts which are either smaller than 0.1 or larger than 50 pixel,
five outliers out of 616 JNDs (28 participants x 22 conditions) for the
pie charts which are either smaller than 0.1 or larger than 60 degree,
and one outlier out of 700 JNDs (28 participants x 25 conditions) in
bubble charts which are either smaller than 0.1 or larger than 25 pixel.

After pre-processing, we plotted the distribution of the JNDs of
the three charts over the two independent variables. Fig. 4 shows
the effects of the two variables on the JND in each chart. A strong
positive correlation can be observed between the JND and the distance
between bars in the bar chart, while we see only a weak to non-existent
correlation between the JND to the height of the bars. In the pie chart,
JND shows a strong correlation to the angles of fans to be compared,
while it is not correlated to angular distance. In the bubble chart, both
the distance and radius of circles show positive correlation with JND.
To examine these correlations, we first applied analysis of variance
(ANOVA) to identify whether there is a main effect for each of the
variables in each of the charts. Then we applied our model settings to
fit the JND to the corresponding changes of these variables.

5.1 Variables with Main Effects
We performed a two-way within subject ANOVA with a linear mixed
model to evaluate the two independent variables, separation distance
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Table 1. Analysis of Variance.

Distance Intensity Distance:Intensity

Bar F(4,642)=6.9
p<.0001

F(4,642)=0.03
p=0.999

F(16,642)=1.6
p=0.055

Pie F(4,562)=0.1
p=0.978

F(4,562)=34.7
p<.0001

F(13,562)=1.9
p=0.026

Bubble F(4,647)=10.6
p<.0001

F(4,647)=24.5
p<.0001

F(16,647)=0.7
p=0.788

and intensity, for each of the three charts.
As shown in Table 1, for bar charts only the main effect of the

separation distance on JND is significant, while the main effect of the
intensity (height of bars) and the interaction effect are not significant.
For pie charts only the intensity (angle of fan) has a significant main
effect on the JND, while the main effect of separation distance and
the interaction effect are not found to be significant at a significance
level of 0.01. For bubble charts the ANOVA result shows that both, the
main effects of intensity (radius of circle) and separation distance are
significant. The interaction effect is not significant .

Fig. 5. Comparison of fits of the linear mixed effect model and the log-
linear mixed effect model: (a) the residual plot of the linear model shows
non-constant variance, while the residual plot of the log-linear model
shows constant variance. (b) the Q-Q plot of the linear model shows
non-normality of residuals, while the Q-Q plot of the log-linear model
shows improvement of normality

5.2 JND Model Setting
Linear Mixed Effects Model We begin our modeling by recalling

our experimental design. The collected JND data is non-independent
and imbalanced: (1) non-independent: each participant was repetitively

measured over all conditions during the experimental procedure. We
cannot apply a simple linear regression due to the clear violation of the
independence assumption in the linear regression model [10]. (2) im-
balanced: as described earlier, a very few mistaken JNDs and extremely
large/small JNDs were excluded. This results in an imbalanced dataset
for repeated measures. Therefore we start with a linear mixed effect
model [2, 40], which takes participant effects into account by adding a
participant varying-intercept random effect uk to a simple linear model.

For each of the three charts c, we have one response variable, the
JND, and two independent variables, the Separation Distance Distance
and the Object Intensity Intensity. Since interaction effects were not
significant for all charts according to the result of ANOVA, the linear
mixed effect model can be described in a general form as follows:

JNDi,c = βc,0 +βc,1Distancei +βc,2Intensityi +uk + εi (1)

Here, uk is the random effect which describes the performance dif-
ference of participant k, it is randomly drawn from normal distribution
N(0,τ2); εi is the random error which follows a normal distribution
N(0,σ2). Note that for each chart situation, the JNDi,c is equal to a
linear function of Distancei and Intensityi with the offset βc,0 and the
corresponding slopes βc,1 and βc,2 plus a random offset uk specified
per participant and a normally-distributed random error εi. According
to the ANOVA result described in Sect. 5.1, we set βbar,2 = 0 for bar
charts and βpie,1 = 0 for pie charts.

Log-linear Mixed Effects Model Some violations of the model
assumptions for the linear mixed effect model are inherent to our data.
The most crucial violation of model assumptions is the non-constant
variance (heteroscedasticity), illustrated in Fig. 5(a)1. As shown in our
model definition in Equation 1, the variance of the random error, σ2,
should be a constant. The upper row of Fig. 5(a) shows residuals plots
of the linear mixed effects models. The fitted JNDc increases with
increasing scale of the residual; this is inconsistent with the assumption
of a constant variance in the linear mixed effects model.

To meet assumption of a constant variance (homoscedasticity) for
the random error, a common and efficient approach is to apply a log
transformation to the data [25]. We performed a log transformation to
JNDc, then the log-linear mixed effects model would now look like:

log(JNDi,c) = βc,0 +βc,1Distancei +βc,2Intensityi +uk + εi (2)

Here uk ∼ N(0,τ2) and εi ∼ N(0,σ2). The log transformation has
additional advantage by avoiding meaningless predictions such as neg-
ative predictions for JNDs. Since the inverse transformation of the log
transformation would map values in (−∞,∞) to (0,∞), the log linear
model ensures that the predicted values of JNDs are always greater
than 0, while this is not the case for the linear mixed effect model.

Comparison of Two Models The results of linear mixed effects
model and log-linear mixed effects model are presented in Figure
5 and 6. Log-linear mixed effects model outperforms linear mixed
effects model. Specifically, (1) Homoscedasticity. It shows that there
is no longer a violation of the constant variance assumption in model
fitting by comparing the residual diagnosis of the log-linear model
with the linear model (Fig. 5(a)). We performed homoscedasticity test
of residuals by using Breusch-Pagan test. The linear models do not
hold the assumption of homoscedasticity for residuals (p < .0001)
for all charts, while the log-linear models hold the assumption of
homoscedasticity for residuals. (2) Normality of residuals. It displays
that log-linear models have less skewness and kurtosis (Fig. 6) in the
residuals than the linear model. The Shapiro-Wilk tests for normality
of residuals and Q-Q plots (Fig. 5(b)) also show an improvement of
normality.

5.3 Discussion
Our results provide a model that quantitatively approximates the JND
for bar, pie and bubble charts, taking into consideration of two variables,

1Models in this paper were fitted using nlme package in R.
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Fig. 6. The coefficients and regression diagnostics of the linear models and log-linear models

intensity and distance. Inspired by Weber’s law, we started the model
setting from a linear mixed regression model, with two variables and
their interaction effect considered. Later the linear mixed regression is
found to fit the experiment data better with a log transformation. The
model shows that JND grows as the exponential function of affected
variables in charts. In this work, we performed a log-linear model by
which the error structure was changed. However there are alternative
models, such as generalized linear mixed model which keep the error
structure unchanged. Future work is encouraged to investigate the
benefits of different models.

As our results indicate, JND perception for bar charts was not pro-
portional to the bar’s height. At a first glance, this might be surprising,
since previous work has found that the perception of line lengths can
be modelled by Weber’s law [29]. However, this can be explained by
the horizontal alignment of the bars in a bar chart, which echoes the
conjectures raised by Cleveland et al. [6] that the primary elementary
task in bar chart is judging positions along a common scale. Also, our
finding that distance between bars significantly correlating with JND
is inline with the results found by Talbot et al. [37], that comparisons
between adjacent bars are more accurate than between widely separated
bars. Thus, when comparing bars, viewers do not compare the length
of the entire bars but rather focus on relative differences of their top
positions. We believe height would matter much more in other forms
of bar charts such as stacked bars, where the bars are not necessarily
aligned. In our experiment, the heights of the bars located between
the two bars to be compared were generated randomly for each trial.
Future work should examine and possibly add a neighboring effect [43]
of close-by bars to the JND model.

Results of the pie chart show that the intensity (i.e., the angle of
the pie segment) affected the perception of JND following Weber’s
law. However, the angular distance between the segments does not
have a significant effect. When reading a pie chart, several perceptual
cues may be used [18]. Angle, area and arc length may all have some
effect on estimation perception of pie segments [31]. However, several
perceptual studies have shown that angle was perceived as somewhat
less important, and that area emerged as the most dominant perceptual
factor [23,31]. It seems that also for a comparison task of two segments
of a single pie chart, area perception is dominant. In this work, we
build up the JND model according to angle, which could be extended
to area or arc length of pie segments in the future.

6 CHART ENHANCEMENT WITH THE JND MODEL

The JND model quantifies the perception of similar objects in charts.
In this section, we demonstrate how this quantification can be used to
enhance charts by alleviating perceptual ambiguities.

6.1 Visual Quality Measurement
The JND measurement can serve as a metric to evaluate the repre-
sentation quality of a chart. A chart is considered with high visual
interpretability when all data elements can be discriminated from each
other (i.e., their difference is above JND). On the other hand, if there
are pairs of elements with differences below the JND, the chart has a
lower visual interpretability.

For example in Figure 1, four different charts visualize the same
dataset, but are detected with different pairs of elements below the

JND threshold. In the left-most bar chart of Figure 1, no below-JND
pair is detected, i.e., all of the bars can be perceived differently from
each other. When bars are placed in a different order, the second bar
chart has a lower visual interpretability since a pair of bars become
perceptually indistinguishable. In the pie chart there are two pairs of
below-JND elements, and in the bubble chart, the visual interpretability
gets worse where three pairs of fans are non-distinguishable.

Thus, the JND model can be useful when choosing or optimizing a
visual representation by first examining the JNDs between elements. As
the example shows in Figure 1, we can use JNDs to detect which visual
encoding works best for a given data set, or take it as an optimization
factor when trying different visual configurations (e.g., changing the
layout of bubble chart, reordering fans in pie charts, etc.). Of course,
there are cases where the data has similar or very close values which
will result in below-JND items in any representation. However, to come
back to our example: although not as accurate in depicting values and
differences as the bar chart, a designer might wish to use a bubble chart
for aesthetic or other reasons. Using JND, she can evaluate whether the
elements in the chart are distinguishable given her data.

6.2 Enhancement of Below-JND Objects
The JND measurement model is able to predict when and where there
might be difficulty in comparing or assessing differences between items
in a chart. Using this prediction, a secondary visual enhancement can
be selectively added to groups of elements who are below the JND
(i.e., below-JND objects). Such a visual enhancement can help chart
readers to be aware of small differences between elements, and enable
ordering of items to help differentiate visual elements representing
similar quantities.

Figure 7 demonstrates the idea of detecting and visually enhancing
elements that are below JND. The three charts show data at three time
intervals. As more data blocks appear in-between bar ’A’ and bar ’B’,
the distance between ’A’ and ’B’ changes, such that the ’A’ and ’B’
are detected to be below the JND threshold in 2018 (the right most
chart). Visual enhancements, in this example text annotations, can be
adaptively added if discrimination is important.

240 245

JND(A,B) = 1.2 pixel

20162016 20172017 20182018

JND(A,B) = 3.1 pixel JND(A,B) = 5.4 pixel

Fig. 7. Adaptive visual enhancement of bars with below-JND values for
better discrimination.

In Figure 7, we show a simple case where textual annotations are
adaptively added to a pair of below-JND objects. A more general case
would deal with the discrimination of multiple below-JND objects, i.e.,
groups of below-JND objects. To detect below-JND groups, a practical
approach is to model the chart as a graph where each node is a data
object of the chart, and edges connect pairs of objects which are below
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the JND threshold. Then, connected components can be detected in the
graph, each of which is a group of below-JND objects.

One conventional way to enhance a chart to enable better detection
of JND objects is to add common grid-lines for finer comparison of
close values [22]. Another plausible way is to overlay secondary visual
cues to facilitate the ordering among below-JND objects. According to
the seminal work by Mackinlay [27], who ranked the effectiveness of
graphical presentations by perceptual tasks, ordinal excel visual cues,
e.g., density, texture, can be considered. Figure 8 shows a bubble chart
example. The top-right side of Figure 8 shows a simple enhancement
design with small marks added to the below-JND bubbles. The number
of marks indicates the quantity order in the group of similar bubbles. In
the bottom of Figure 8, we show some possible designs of a five-scale
ordinal comparison. Compared to text annotations and grid-lines, these
visual markers are integrated into the visual objects, therefore they
require less displaying space and are not as cluttered. This is especially
so for bubble charts where bubbles are placed in a compact layout.
However, these markers may create an overload on the perception of
the main visual channel. Text annotations might be easier to discern
as it is easier to separate texts and visual objects. In this work, we
focus on the JND modeling and leave enhancements methods of below-
JND objects as an open question. Future works can examine various
enhancing designs and examine which enchantment type is better under
which circumstance.

Plain Bubble Chart Ordinal Visual Cues

5-scale Ordinal Design Examples

Fig. 8. Bubble chart with below-JND enhancement: (top-left) original bub-
ble chart; (top-middle) common grid-line style enhancement; (top-right)
ordinal-icon style enhancement; (bottom) some other ordinal designs.

6.3 An Experiment to Examine Below-JND Enhancement
For further validation, we conducted a second experiment to examine
the performance of an object comparison task for objects below and
above our fitted JND. We compared error value and time cost in a
discrimination task of different JND-values to a baseline that includes
annotations, to see how effective are our predictions and when visual
enhancement of below-JND objects are needed.

We sampled nine conditions for each chart: 3 different distances
and 3 different object intensities ([90, 170, 230] height x [100, 220,
330] distance in bar chart, [23, 35, 47] radius x [80, 140, 200] distance
in bubble chart, [34, 76, 118] angle x [25, 55, 85] angular distance in
pie chart). For each condition, six comparisons were generated, three
of which included objects whose difference was below the fitted JND
value (below-JND objects whose difference Di f f = JND2.5% ∗(1+δ ),
where δ ∈ {−0.15,−0.3,−0.45}) and three comparisons with objects
whose differences were above the fitted JND (above-JND objects with
difference Di f f = JND97.5% ∗ (1+δ ), where δ ∈ {0.15,0.3,0.45}).

For each comparison we prepared two versions: plain and annotated.
The plain chart was a regular chart that did not include any aids, while
the annotated chart included numerical values on top of the objects that
had to be compared. Figure 9 shows the annotated chart. The plain
chart was exactly the same, but without the numerical annotations.

Fig. 9. Annotated charts used in the below and above JND experiment.
(Note that charts were scaled here, therefore the annotations look smaller
than what they actually look like in the study.)

Twenty four (24) participants were recruited. Each participant saw a
total of 324 trials (3 charts * 9 conditions * 6 comparisons * 2 versions),
with trial order being randomized. 16 out of the 24 self-reported with
little expertise in visualization. In each trial, participants were asked
to pick the taller/larger object from the two marked ones. Overall,
the experiment set-up and procedure was the same as the experiment
introduced in Section 4.3. Time cost and accuracy were recorded for
each test. Figure 10 shows the experimental results with the left column
showing the accuracy and the right column showing the time cost.

Looking at error rate, for the three types of charts, the annotated
conditions have unsurprisingly a very low error rate. In the plain chart
condition, for all three chart types the error rate of below-JND objects
is much higher than that of the above-JND objects. When comparing
the plain and the annotated condition, the error rate of the above-JND
of the plain condition is pretty close to that of the annotated condition,
but it soars for the below-JND values. This clear rise in error rate can
be noticed in all charts between the -0.15 (below JND) and the +0.15
(above JND) delta values. These observations suggest the necessity of
chart enhancements when comparing below-JND objects.

For the time cost of correct answers, we see that for bar charts
the participants answered more quickly in the annotated condition
compared to the plain condition. This was not the case for bubble or
pie charts. It is interesting to note that for the plain condition, in both
the bubble and the pie charts, there is a slight drop off in the above-JND
time cost compared to the below-JND values, sometimes falling even
below the time cost of the annotated chart. With more annotations (e.g.,
if all values in the chart will be annotated), it is likely that the time cost
of the annotated chart would increase. Thus, adaptive annotations of
only below-JND values as well as design enhancements that utilize less
visual clutter are important. Further work should be done to examine
time-costs when there are more annotations.
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Fig. 10. Error rates and time costs for plain and annotated charts:
(left) Error rates, i.e., the proportion of wrong answers in relation to the
differences; (right) average time cost per trial with correct answer.

7 CONCLUSION

Discriminating quantities of chart elements is a fundamental chart
reading activity [18, 33]. This work continues the research line of
perception modelling and takes one of the first steps in modeling JND
in visualizations, to facilitate with the quantity discrimination in charts.
Specifically, JND in charts is modelled to two visual variables: object
intensity and separation distance. Using experimental data collected
from 28 participants in an elementary discrimination task, JND is
examined in three conventional charts in relation to object intensity
and distance. In the bar chart, distance between bars on JND is found
statically significant, while the height of bars is not. As the distance
becomes larger, JND becomes larger. For the pie chart, JND depends
on the angle of fan sections to be compared, while no significance
is found for the fans’ angular distance. For the bubble chart, both
intensity and distance are found significantly related to JND. A log-
linear mixed effects model is found and implemented that fits JND as an
exponential function of the detected variables. We show the application
of the model by suggesting to use chart enhancements, adding adaptive
gridlines, annotations, or other enhancements when below-JND objects
are detected.

This work situates the JND study in the field of psychometric in the
context of visualization. Since chart perception is often affected by
the entire chart environment, it may be possible to refine our model
considering other factors such as chart size, scale, or bar width (in the
bar chart). These examinations are left for future works.

In this work, we performed a laboratory experiment, which had a
limited group of participants with a similar background. This might
inject some bias into the JND models. One future work would thus
be to extend this study to crowd-sourcing experiments (e.g., [16]) to
involve participants of larger diversity. Also, we studied JNDs in a
controlled environment, in which charts were displayed on a 600x600
canvas on the screen of a personal laptop The exact JND model might
be dependent on the display size and quality. While we believe our
main findings of the effects of intensity/distance on JNDs in charts are
applicable to all displays, the exact model parameters might need to
be set differently on different displays. Also, it would be interesting

to study JND in other visual environments, such as hand-held devices,
tiled or larger displays or virtual reality scenarios, and see whether
the constructed models remain valid in these situations. Finally, there
might be other contextual factors which could potentially influence the
JND such as color (e.g., color perception of chart elements was found
to be affected by other visual channels of these elements such as size
and shape [32, 36]), neighboring element sizes (neighborhood effect)
or other factors. We encourage following work to study these potential
factors and refine the JND models.
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