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ABSTRACT

There are often multiple routes between regions. Many factors po-

tentially affect driver’s route choice, such as expected time cost,

length etc. In this paper, based on taxi GPS trajectory data, we

propose a visual analysis system to explore driver’s route choice

behaviour among multiple routes, i.e., how it is influenced by fac-

tors. With interactive trajectory filtering, the system constructs real

feasible routes between regions of interest. Three complementary

visualizations are designed to explore different routes and potential

factors’ impact on route choice behaviour. Applying to real trajec-

tory dataset, the effectiveness of the system is demonstrated by two

cases.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Visual Analytics

General Terms

Visual Analytics

Keywords

Multiple Route Choice, Visual Analytics, Visualization

1. INTRODUCTION
As modern traffic road network develops, there are often mul-

tiple routes to choose from when travelling from one place to an-

other. Drivers may make different route choices in different consid-

erations. For example, expected time cost is one of the most dom-

inant factors. Some web mapping services, e.g. Google Map [1],

offer route planning which mainly considers travel manner and ex-

pected time cost. However, there are some other factors that poten-

tially influence route decision making, such as the number of traffic

light, travelling comfortableness etc. Various factors interact with
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each other so that it is not straight-forward to figure out what drives

route decision making.

Recently, many efforts have been made to study how driver se-

lects route with different factors i.e., route choice behaviour. Clas-

sically, research is performed based on Stated Preference (SP) sur-

vey data [2]. SP collects route preferences in hypothetical situ-

ations from respondents. Different choice considerations can be

directly measured by the information in questionnaires. With SP

data, various route choice models [7] [18] are developed, trying to

capture impacts of different factors on the route choice behaviour.

However, such investigations are limited in range and the surveys

need to be carefully designed. Also, what obtained from inves-

tigation is not practically reliable enough. In recent years, some

researchers perform the analysis with the help of Global Position-

ing System (GPS). Compared to traditional investigations, GPS re-

ceivers are used to collect trajectories of volunteers, which takes

less effort and is more realistic. But such pilot studies are often

conducted among a limited number of users in restrained spatio-

temporal scale, like, only collecting morning commute trips [22] [29].

In this work, rather than experiment dataset, we explore the pos-

sibility of studying route choice behaviour based on more general

GPS trajectory data, specifically, taxi GPS trajectories. Relieved

from customizing, taxi GPS trajectory is more general. However,

at the same time, there are two main challenges introduced by using

general GPS trajectory dataset:

• Extract relevant trajectories in the context of multiple routes:

Unlike the experimental GPS trajectories which are constrained

in certain spatial and temporal range, how to extract trajecto-

ries travelling through multiple routes of interest from mas-

sive trajectories needs to be tackled.

• Raise hypotheses on factors that significantly influence the

route choice behaviour based on taxi trajectories: Different

from data collecting from hypothesis-oriented experiments,

how to indicate the impact of factors on route choice to facil-

itate hypothesis establishment is crucial.

From the angle of visual analytics field [28], we propose a visual

analytics system by leveraging human interaction and judgement

in the analysis process to tackle the above challenges: with a suite

of graphical filters, trajectories travelling between regions of inter-

est are queried interactively; based on filtered trajectories, feasible

routes are constructed automatically; with a list of factors derived

from general GPS trajectory data, route choice distributions over

those factors are visualized, which supports to explore and raise



hypotheses on potential influence; then the hypotheses are further

verified by the statistical model to draw reliable conclusions.

2. RELATED WORK
In this section, we have a discussion of related work on route

choice behaviour analysis in transportation field and then report the

research progress in visual analytics using trajectory data set.

2.1 Route Choice Behaviour Analysis
Route choice behaviour has been widely studied in the trans-

portation analysis area. In early years, most researches are based

on statistical investigations or experiments. By analysing a total of

2182 home-to-work records in Seattle, Mannering et al. [25] find

that 26% people do not always use the same route. Concerning the

reason, Khattak et al. [19] study 700 commute trips from question-

naires, and find that both congestion and the perception of alter-

native routes increase the probability of route changes. With re-

spect to personality, males, young people and experienced drivers

are more likely to change routes, as concluded by Xu et al. [32] in

a study of 247 morning home-to-work trips. In these works, sta-

tistical inquiries play an important role, where questionnaires are

carefully designed to obtain problem-related information involving

personal details. However, investigations are limited in both the

sample range and its validity. Realism is also a problem given the

divergence between recalled and observed circumstances.

To obtain more authentic information, some researchers base

their studies on GPS data in recent years. Li et al. [22] study morn-

ing route choice patterns based on a GPS dataset collected from 182

vehicles in 10 days. Factors like age, departure time and income

level are found convincingly influential. More recently, Alessan-

dro et al. [29] study route switch behaviours between the same OD

pair by tracking the participants with portable GPS devices. Some

dominant factors are revealed, such as traffic light number (per km),

highway percentage, perception of time, etc. Compared with inves-

tigations, GPS records provide more truthful measurement of route

choice behaviours, with lower costs and higher precision. How-

ever, subject to the analytical requirement of individual character-

istics, the data is still problem-related and range-limited. Instead,

our system is designed for general GPS data covering a much larger

range (tens of thousands of taxies). What’s provided in our system

can support interactive data customization and real-time processing

according to different analytical demands.

2.2 Trajectory Visual Analysis
Andrienko et al. [4] present a taxonomy of generic analytic tech-

niques based on possible types of movement data. For trajectories,

there are three kinds of explorations [6]: direct depiction, pattern

extraction and visual aggregation. Direct plotting could simply fail

because of visual cluttering. Pattern extraction methods employ

automatic analysis to extract underlying data pattens [13], e.g. the

traffic jam propagation graph extraction [30]. Aggregation meth-

ods visualize movement groups to reveal the high-level movement

graph. Guo [15] and Adrienko [3] et al. construct geographical re-

gions and visually aggregate the in-between movements as flows.

Besides aggregation between regions, travel behaviour within in-

terchange region are visualized. Guo et al. [16] provides a circular

design to explore movement at a road intersection. Zeng et al. [34]

derive a visualization from Circos [21] to display interchange traffic

flow at subway transition stations. Lu et al. [24] aggregate trajecto-

ries along a single route and rank them by their time cost along the

road segments, to reveal mainstream and outliers. Liu et al. [23]

study the route diversity between locations and provide a clock like

radial layout to display temporal statistic distribution. Different

from analysing individual trajectories, our method provides analy-

sis based on extracted topology structure. Zeng et al. [33] visualize

the mobility of routes starting from a single source in public trans-

portation system and provide comparison among different routes.

Similar to their routes’ comparison, our work provides comparison

among multiple routes.

Alternative to analyse global trajectory as a whole, trajectories

of interest can be filtered to perform local analysis. Andrienko et

al.’s book [5, Chapter 4.2] summarize different kinds of filtering.

In this work we implement fully interactive filters similar to Tra-

jectoryLenses [20]. It allows users to extract trajectories from a

common origin and a common destination. The origin and destina-

tion are defined by interactive lenses. Ferreira et al.’s system [11]

for New York taxi exploration also has a similar design to filter

trajectories by their origins and destinations.

3. OVERVIEW
In this section, we first introduce the background of data and

tasks of this work and then present pipeline of the visual analytics

system.

3.1 Data Background
In the following, we list down common terminologies in this

work to facilitate the discussion, which are illustrated in Figure 1:

• Trajectory is a list of positions in the temporal order, record-

ing the movement.

• Origin/Destination (O/D) refers to the beginning/ending po-

sition of movement.

• Route is a sequence of physical roads that vehicles travel

through.

• Origin/Destination of Interest (OoI/DoI) refers to the inter-

ested beginning/ending position of movement.

• Multiple Routes are the alternative travelling Routes between

the same pair of OoI and DoI.

Route

Destination of Interest

Origin of Interest Trajectory

Origin 

Destination

Figure 1: Illustration of Related Traffic Concepts

Note that OoI/DoI is not necessarily the O/D. In Figure 1, OoI/DoI

is set at the common position where trajectories begin/end, to study

the choice behaviour where multiple routes exist.

Different from designed experiment collecting factors on pur-

pose, factors in our case are derived directly from general GPS

dataset. Table 1 summarises the derived factors, which consists

of two categories: route-related factors and trajectory-related fac-

tors. For each route, with road network dataset, its traffic related

attributes can be derived, e.g. the length of route, the total number

of traffic lights along the routes. Those attributes probably play a

role in the drivers’ route choice. On the other hand, for each trajec-

tory, it has individual difference which drivers probably consider to



Table 1: Table of Derived Factors
Object Attribute Description Motivation

Route

Route Length The route geographical length Do drivers prefer shorter route length?

Traffic Light Number
The total number of traffic light

along the route
Do drivers prefer less traffic light number?

Route Significance
The significant metric
based on the road level

Do drivers prefer route with more significant?

Time Cost Distribution
The potential time cost
distribution of a route

Do drivers prefer route with less time cost?
Do drivers prefer route whose time cost is with less variation?

Trajectory
Departure Time in a Day

The departure time in the
time scale of day

Do drivers departing at different time make different route choices and how?

Departure Day
The departure day in the

time scale of a week
Do drivers departing on different day make different route choices and how?

Trajectory’s Length The total travel distance of the trip Do drivers travelling in different length make different route choices and how?

adjust the route choice. For example, drivers travelling between the

same pair of OoI and DoI in peak time and off-peak time probably

make different route decisions.

3.2 Analytic Tasks
In this part, we clarify analytic tasks to explore route choice be-

haviour with general GPS trajectories. Given a pair of OoI and

DoI, firstly, the system gives an overview of the possible routes.

Then the route-related factors are explored to acquire an overall

understanding of choice preference among route-related factors.

And then route choice distribution over trajectory-related factors

are studied, to raise hypotheses on factors that potentially impact

on the route choice behaviour which are otherwise supposed un-

changed if only considering route-related factors. Finally, the sys-

tem should be capable to examine the proposed hypotheses to tell if

the impact is significant. Based on these requirements, the design

tasks are summarized as following:

• Overview of multiple route choices (T1): give an overview of

the possible feasible route choices between OoI and DoI.

• Exploration on the route-related factors impact on route choice

(T2): describe each route by route-related factors and com-

pare routes in terms of route-related factors.

• Building hypotheses on the impact of trajectory-related fac-

tors on route choice (T3): explore the route choice distribu-

tion over trajectory-related factors and propose hypotheses

on the potential impact.

• Evaluating the impact of trajectory-related factors on route

choice behaviour (T4): build a statistic model to examine the

impacts on route choice significant or not.

3.3 System Overview
We propose a visual analytics system integrating visualization,

interactions and statistical modelling to support the above tasks.

Figure 2 shows the pipeline of the system.

In the preprocessing stage, trajectories are cleaned. To facilitate

filtering in massive trajectories, a quad-tree spatial index has been

built. In run-time stage, with a suite of graphical filters integrated

in the system, trajectories between a pair of OoI and DoI are fil-

tered. With those filtered trajectories, the feasible multiple routes

are extracted by a grid-based algorithm and the topology graph is

constructed. Then trajectories and extracted routes are fed as input

to visualization and visual analytic module. The module mainly

consists of three parts: spatial view gives a geographical overview

of extracted multiple routes to show how those routes travel; route-

related factor view visualizes the route-related factors in a ranking

diagram which supports exploration and comparison among differ-

ent routes; trajectory-related factor view displays the distributions

of route choices over trajectory-related factors to help propose and

verify hypothesis. For the trajectory-related view in detail, the dis-

tribution of multiple routes over those factors are visualized based

on stacked-bar chart, in which great interest arises where dramatic

volume change of route choices. Then by interactive hypothesis

configuration, an statistical analysis model is customized to verify

the hypothesis. After modelling, the results are integrated visually

back in the trajectory-related factor view, to tell if the impact is

significant.

Among the three views, users are able to correlate the route-

related factors and trajectory-related factors by cross-filter interac-

tion strategy [31]. Meanwhile, from trajectory filter to modelling,

the visual visual analytics procedure supports iterative exploration.

4. MULTIPLE ROUTES GENERATION
For the massive taxi GPS trajectories, the system integrates graph-

Raw GPS Data Road Network Data
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Figure 2: The System’s Pipeline: the yellow background indi-

cates the automatic processing and gray background involves

human interactions and judgements.



ical filtering which supports to query trajectories intuitively with

spatial and temporal constraints. With the filtered trajectories, a

grid-based algorithm is proposed to extract all feasible routes auto-

matically.

4.1 Trajectory Filtering
The filter model consists of atomic spatial and temporal queries.

From the temporal aspect, a two-level temporal filter supports to

query from date and time level.

From the spatial aspect, similar to TrajectoryLenses [20], we de-

sign circular filter, which defines a circular area in the spatial space

to query trajectories with certain constraints. For usage simplic-

ity, parameter tuning is embedded into the circular filter. As Fig-

ure 3 shows, when hovering on certain region, certain function is

waked and corresponding handle is visible. For example, hovering

in the center invokes the moving function. Besides modifications

on filter’s geometric parameters, six possible location constraints

are provided: origin, destination, origin/destination, passing, in-

clusive, and exclusive. Moreover, for two or more filters, direction

can be assigned between filters to select trajectories following cer-

tain direction. Complex filtering can be built by combining filters,

which cooperate with each other in intersection operation. In this

work, the first two filters are detected to define the OoI and DoI by

default.

Constraint

 Setting

Deleting Direction AssigningMoving ResizingOrigin

Figure 3: Interactions on Circular Filter: different functions

are invoked by hovering on corresponding regions. Direction

between filters is assigned by dragging from one to another.

4.2 Multiple Routes Extraction
With filtered trajectories from OoI to DoI, we employ an auto-

matic grid-based algorithm to extract multiple routes, regardless of

road-network data.

Figure 4 illustrates the process of route extraction. First, a grid is

covered within the boundary box of filtered trajectories(Figure 4(b)).

Then each trajectory is denoted by the sequence of passing cells

(Figure 4(c)). For each cell, we derive its average direction from

trajectory segments inside it. Then the directions are further ap-

proximated as horizontal or vertical ones (Figure 4(d)). Neighbour-

ing cells with the same directions are merged to avoid ambiguity

(Figure 4(e)). After that, routes are formed by linking cells (Fig-

ure 4(f)). Cells with more than one in/out degree are detected as the

splitting/merging nodes(Figure 4(g)), based on which the multiple

route graph is constructed. Finally, multiple routes are encoded

visually (Figure 4(h)), which will be introduced in Section 4.2.

5. VISUAL DESIGN
In this section, we present design of visualizations in our sys-

tem. Corresponding to tasks introduced in Section 3.2, the interface

mainly consists of three parts: the route spatial view, the route-

related factor view and the trajectory-related factor view.

5.1 Route Spatial View
To provide an overview of multiple routes (T1), the route spatial

view is designed with following considerations:

(c) Encode Trajectories 

by Grid

(a) Filter Trajectories

(e) Merge Ambiguous 

Cells

(b) Generate Grid

(f) Link Cells (g) Construct Topology 

Graph

(d) Detection Direction

(h) Visualize Graph

Figure 4: Multiple Route Graph Constructing Process: by cov-

ering a grid over trajectories, multiple route graph is built upon

travelled cells.

• Representation of OoI and DoI (CI): to locate the areas

where are OoI and DoI.

• Visibility of multiple routes (CII): to make all the feasible

routes between OoI and DoI visible, including both the pop-

ular ones and the seldom travelled ones.

• Indication of traffic flow directions (CIII): to show the

travelling directions along routes, especially at the intersec-

tions.

• Summary on routing (CIV): to summarize several major

route choices by merging similar routes

After interactively manipulating circular filter (discussed in Sec-

tion 4.1), the OoI and DoI circular filters are settled down and oth-

ers are hidden for a clean visual style. To indicate OoI and DoI

filters, inward and outward arrows are attached respectively (CI).

The extracted routes are visualized as bands, whose width en-

codes the number of passing trajectories. A logarithmic mapping

is used to enhance the visibility of seldom travelled routes (CII).

Routes sharing the same road segments are stacked, on which a

tooltip is shown when hovering, to facilitate selection (Figure 5(b)).

In the tooltip, the currently hovering route with its number of trav-

elled trajectories is highlighted. Hence, users are able to select

routes easily by moving up and down over the staked bands, espe-

cially the unpopular ones. Considering directions in straight roads

are self-evident, we design a glyph to embed the traffic directions

at crossings. In the glyph, its size encodes the volume of passing

traffic flow and the arrow inside implies the average flow direction

(CIII).

We summary the routing between a specific OoI and DoI by

mainstream routes with their alternatives (CIV). Initially, routes

with the top 25% traffic volume are regarded as the mainstreams.

Others are assigned to their closest mainstream routes by topology

similarity. In our case, we choose the edit distance [27] to mea-

sure the topology similarity, which counts the minimum amount of

switches required to transform from one sequence to the other by

denoting route as a sequence of its crossings. Considering main-

stream and its similar alternative routes as a group, qualitative col-

ors [17] are used to differentiate different groups. Within each

group, all routes are colored similarly, with the lightness inversely

proportional to the route popularity. Additionally, to minimize the



(a)

(b)

Figure 5: Route Spatial View: (a) geographical overview of

multiple routes: the route width encodes the amount of traffic

flow. the arrow glyph at each intersection indicates the average

flow direction. (b) one highlighted route in the road segment

tooltip: all stacked routes are displayed in the tooltip to facili-

tate selection.

mental gap, a topological graph in the node-link diagram (Fig-

ure 6(a)) and corresponding color scheme (Figure 6(b)) is given.

Note that the color scheme is used globally across all views.

(a) (b)

Figure 6: Topology-based Color Scheme: (a) topological graph

of multiple routes: all routes are categorized into a few groups

based on topology similarities. (b) the global color scheme

based on topology-based grouping.

5.2 Route-related Factor View
Inspired by ranking visualizations (e.g., LineUp [14]), we de-

sign a ranking-based visualization to support exploration on route-

related factors’ impact on multiple routes (T2). The ranking-based

visualization supports users to have an insight into the preference

on factors by comparing them. There are several considerations we

have taken in the design (for simplicity, factors specifically refer to

the route-related factors in this subsection):

• Accommodation of different factor types (CI): to visualize

both static and dynamic factors.

• Comparison of multiple routes among factors (CII): to

enable comparison among route factors.

• Exploration on routes in topological relationship(CIII):

to support exploration on those routes in topological rela-

tionship, e.g., similar routes.

Figure 7(a) illustrates the design of route-related factor view.

The view mainly contains two parts: route-related factors in the

left and topological relationships in the right. In the view, each row

depicts a route whose color is consistent with that in route spatial

view. Static factor, e.g. route length, is presented by a bar whose

horizontal width encodes its value. Dynamic factor, e.g. time cost

distribution of the route, is represented by a horizontal-aligned box

plot with outliers preserved (CI). By default, routes are ranked from

top to bottom in decreasing order of the number of passing tra-

jectories. Each factor can be ranked to support comparison (CII).

Specifically, dynamic factors are ranked by the medians of distri-

butions in our case. Transparent links are used to facilitate visually

tracking of routes.

Comparing routes in close topological relationship is especially

of great interest. Hence, besides selecting route by directly click-

ing rows in the view, two more route selection modes are integrated

in the right side (CIII): hierarchical structure among routes whose

root node is the OoI and all leaf nodes are the DoI to select routes

sharing the common road segments in different degrees (named as

’Tree’ in the view); similar group structure supports to select a

group of similar routes which is discussed in Section 5.1 (named

as ’Node-Link’ in the view). Figure 8 illustrates the selecting func-

tions of the two modes.
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Figure 8: Two Route Selection Modes: by clicking correspond-

ing node, a group of routes in certain topological relationship

are selected.

5.3 Trajectory-related Factor View
For each trajectory, it has individual differences from others, i.e.

the trajectory-related factors in this work. As discussed in Sec-

tion 3.1, three trajectory-related factors are derived from general

GPS trajectories. In this section, we first introduce the statistical

model used to model the impact. Then we present the visualization

and interactions that help with hypotheses construction (T3) and

verification (T4). For similarity, the factors refer to the trajectory-

related factors in this section.

5.3.1 Multinomial Logit Model

To verify factors’ impact on route choice, we adopt the Multi-

nomial Logit (MNL) model [10] which is simple, understandable,

and widely used in the transportation area for route choice analy-

sis [8, Chapter 7.3]. The basic assumption of MNL is that people

always choose the option with the maximum utility. Assume that

there are M people choosing from N routes, the utility is measured

as follows:

Ui j = βββ iXXX j + εi, i = 1, · · · ,N, j = 1, · · · ,M (1)

The Ui j here represents utility of the i-th option assessed by the j-

th person. It consists of an observable part βββ iXXX j and an unknown

part εi. The XXX j vector denotes observable factors of the j-th person,

while βββ i is the coefficient vector of option i, a major output of the



(a)

(b)

Figure 7: Route-related Factor View: (a) initial view. (b) view after ranking on several factors.

model. From the maximum utility assumption, the probability of

person j choosing option i can be derived as follows:

Pj(i) = Pr(Ui j >Uk j),∀k 6= i (2)

To eliminate the unknown term, probability is expressed explicitly

in the MNL model as:

Pj(i) =
eβββ iXXX j

∑N
k=1 eβββ kXXX j

(3)

From this formula, we can see that the probability varies monotonously

with the observable term βββ iXXX j = ∑D
t=1 βitX jt . Here, D denotes the

number of observed factors, and the coefficient βit depicts the im-

pact of factor t on option i. The model is usually further simplified

by setting a basic option, e.g. option m. Choice probabilities are

made relative to the base:

ln(Pj(i))− ln(Pj(m)) = ln(
eβββ iXXX j

eβββ mXXX j
) = (βββ i −βββ m)XXX j = βββ

′

iXXX j (4)

The new coefficient shows the impact of factors when choos-

ing between option i and m. Specifically, when βit gets positive,

it means that people prefer option i to the base option m when X jt

increases. Inversely, when βit gets negative, people prefer the base

option m to the option i when X jt increases. The result is only

meaningful when it is tested significant. In our context, the route

with maximum trajectory number is set as the base option m. We

set this because what persuades people to leave the mainstream to

another route is always a research interest. The confidence level (p-

value) is also derived to verify significance of the impacts. Given

the coefficient matrix βββ
′

i along with p-values, users are able to val-

idate the influence of each factor on each route choice.

In our case, the potential factors X jt are not all numerical. The

departure time in day and week scale are nominal so that there is no

intrinsic increasing. For example, Saturday is not increased from

Friday. To solve this problem, the nominal factors are allowed to

be factorized into numerical sub-factors which take 1 if during the

value range and 0 if outside the value range.

Notice that our system uses but doesn’t limit to MNL model.

Modelling computations are done by using the flexible Matlab En-

gine [26], which is highly replaceable by other route choice models.

5.3.2 Visual Design

To explore trajectory-related factors’ impact of on route choice

behaviour, trajectory-related factor view is designed with following

considerations:

• Factor distribution of multiple routes (CI): to allow for

the comparison of factor distributions when different route

choices are made and facilitate raising hypotheses on poten-

tial impact.

• Configuration of statistic model (CII): to support users in

refining the factors.

• Impact of factors on route choices (CIII): to show credi-

ble conclusions about the factor impacts on route choice be-

haviours.

In Figure 9(a), the factor view is composed of three parts: the

stacked bar chart, the factor configuration panel, and the factor im-

pact matrix.

(a)

(b)

7:00~9:000

2 16:00~19:00

0.8 *

- 0.3

- 0.1

- 0.1

Orange VS Blue Red  VS Blue

* p - value < 0.05

Figure 9: Trajectory-related Factors View: (a) the stacked

bar chart (left-top) visualizes distribution; factor configuration

panel (left-bottom) supports factor customization; impact ma-

trix shows the output. (b) the underlying coefficient matrix out-

put of MNL model

Stacked bar chart visualizes the distribution of different route

choices over factors, whose color legend is consistent with other

views. Stacking multiple routes in a superposition layout makes it

intuitive to locate the dramatic change of trajectory volume with

certain route choice, which probably indicates a potential impact

(CI). For example, in Figure 9(a), the number of trajectories with

the route choice in orange color increases dramatically on 9 o’clock.

After raising hypotheses, as discussed in Section 5.3.1, factor

configuration panel supports to customize nominal factors into nu-

merical sub-factors, serving as the input of MNL model(CII). Gray

bands mark the range of sub-factors, each of which is labelled by

an index. As Figure 10 shows, several interactions are developed

in the panel to modify the configuration. For example, hovering on

the band, a menu pops out for basic editing operations, including

factor creation, deletion, adjusting and merging.

After factor configuration, the MNL model is used for statisti-

cal evaluation. A matrix displayed aside the bar chart (in the right

of Figure 9(a)) visually encodes the coefficient outputs of MNL in

Figure 9(b). The blue route with maximum trajectory number se-

lected as base option is visualized at the top-right corner. For each



cell in the matrix, the coefficient is directly printed to preserve pre-

cision of result. Those cells with significant (95% certain) impacts

are highlighted in corresponding route colors.

Origin

Highlight Adjust Merge Add Delete

Figure 10: Factor Configuration: operations to customize fac-

tors.

6. CASE STUDY
In this section, we first introduce the set-up of system. Based

on a prototype system with Beijing taxi GPS trajectories, we report

two cases to demonstrate how the visual interface facilitates the

exploration of multiple route choice behaviour.

6.1 Input Data
We take the GPS dataset recorded in Beijing as the experiment

data. The data is collected from 28,519 taxis in 24 days, from

March 2nd to 25th, 2009. The data size is 34.5 GB in total and con-

sists of 379,107,927 sampling points every 30 seconds. Each sam-

pling point contains time, latitude, longitude, speedmagnitude,

direction as well as a boolean CarryPassengerState, which is a tag

indicating whether the taxi carries passengers or not. In this work,

we only use the trajectories with passengers.

Along with taxi GPS dataset, the road network data is collected

from OpenStreetMap’s jXAPI [9]. Following an existing paper [30],

in the data preprocessing step, trajectories are cleaned and matched

to the road network. The final data size is 12.1 GB.

6.2 Implementation
We have implemented a prototype system to test the effective-

ness of our method. The system is written in C++, with Qt frame-

work. The rendering is performed with both OpenGL and Qt Graph-

icsView Framework. Third-party libraries Graphviz [12] and Mat-

Lab [26] are integrated to do the topological graph layout and per-

form MNL model. We run the system on an Intel(R) Core(TM)2

2.66 GHz Laptop with 4 GB RAM and a NVIDIA Geforce GTX

470 GPU.

6.3 Case I: Exploring Multiple Route Choices
With the route spatial and route-related factor view, the system

supports to explore the multiple route choices between interested

regions, by fulfilling the tasks (T1)(T2).

In this case, the OoI and DoI are set at Beijing Airport and a cen-

tral business district respectively. In total, 369 trajectories passing

through are filtered from March 2 to March 25, 2009.

As Figure 11(a) shows, multiple routes are extracted from these

trajectories, which are categorised into three groups of route choices.

For each group, there is a mainstream route choice with dominating

popularity and several alternative choices with small number of tra-

jectories. To obtain a general understanding of route choices, the

three mainstream route choices are selected. As the route spatial

view in Figure 11(b) shows, the three share some common roads

(a) (b)

(c)

Figure 11: Case Study #1: exploring route choices from Air-

port to a commercial district: (a) the spatial overview. (b) three

selected popular routes. (c) route-related factors’ comparison

among the selected routes

in the beginning and then the purple one splits from the other two.

Subsequently, after travelling a distance, the blue and red heads into

different roads respectively. Among the three route choices, nearly

60% taxi drivers choose the purple one and 20% choose the blue

one and nearly 15% for the red one. The left 5% choose other less

travelled routes.

By ranking factors in the route-related factor view, the three se-

lected routes are compared over multiple attributes. The purple

route has the longest travel distance but the least traffic light num-

ber, and the average route importance is in-between the blue and red

one. Comparing the box plots in the travel time cost column, the

blue and red have smaller median travel time cost than the purple

one, which probably owes to their undeniable advantage in travel

distance. However, the width of their boxes are larger than that of

the purple one, i.e. their time cost distributions are more stretched.

It indicates that the time cost of the purple route is more reliable

and predictable because of its small variability,

6.4 Case II: Exploring Factors’ Impact on Mul-
tiple Route Choices

In this case we show the system’s capability on exploring trajectory-

related factors’ impact on route choices from hypothesis construc-

tion(T3) to statistics verification(T4).

Choosing route to cross different ring roads is a common multi-

ple route choice problem in Beijing. Taking it as an example, we

place the OoI filter on the 3rd north ring road and the DoI filter

at the 4th north ring road. 296 trajectories travelling through are

filtered from March 2 to March 8, 2009. Figure 12(a) shows that

the top three most popular route choices, i.e. the blue, red and or-

ange, have much larger popularity than others. To compare their

attributes, the top three are selected and ranked by attributes in the

ranking view (Figure 12(d)). Overall, the top three routes have ad-

vantages over those seldom travelled routes in route distance, traffic

light number as well as the route importance level. Within the three

routes, the blue route ranks top. The ranking order of median time

cost is consistent with that of route’s popularity, which indicates



(a) (b)

(c)

(d) (e)

Figure 12: Case Study #2: (a) route spatial view of three selected major routes. (b) trajectory-related factor view. (d) route-related

view with selected three routes; (e) travel time cost distribution of the three selected routes during departure time range in (c).

that drivers tend to choose the route with less time cost.

To explore the trajectory-related factors’ impact on choice among

the three major routes, their distributions over factors are visualized

in Figure 12(b). It is observed that the orange route increases dra-

matically around 9 o’clock in the morning, which raises hypothesis

that drivers has larger probability to choose the orange road in the

morning. By configuring model with three sub-factors in departure

time factor, together with default configuration of the other two

factors, output of route choice model is given in factor matrix in

Figure 12(b). Taking the blue route as base route, the orange rect-

angle indicates that departure time from 7:00 to 10:00 in the morn-

ing has significant impact on the odds of orange route than the blue

route. That is, when travelling in the morning peak, drivers have

larger probability to choose orange route than the blue one. As

Figure 12(c) shows, by selecting the trajectories travelling during

this time period, the distribution of time cost in the ranking attribute

view is updated as Figure 12(e) shows. The average time cost of

blue route increases and the variance increases. Comparing with

the blue one, the red and orange ones have more reliable time cost

during this time period. Interestingly, as the trajectory’s length in-

creases, the odds for both the red and orange routes increase, which

may indicate that drivers tend to drive to the 4th right as soon as

possible if travelling far.

7. CONCLUSION
In this paper, we explore the possibility of studying route choice

behaviour based on taxi GPS trajectories. Compared to classical

route choice analysis method, our general GPS based solution cov-

ers larger temporal-spatial range as well as larger sampling number.

In this work, we list the factors that can be derived from trajectories

which defines the boundary of this general GPS data based solu-

tion. With this, we present a visual analytic system based on four

proposed tasks: from route choice overview to verify factors’ im-

pact on route choice. The system’s visualizations and interactions

are designed carefully according to task-oriented considerations.

At last, with the historical Beijing taxi GPS trajectory dataset, we

demonstrate two case studies to show its effectiveness.

In the future, we would like to improve and extend our system

regarding to the current limitations. Currently, the input factors are

fixed. Following, the system will be customized to accept creation

of factors. For example, OD distribution can be one of the possi-

ble trajectory-related factors. Another interest point is to extend to

system with route advisory function. It is possible to recommend

routes by taking different factors into consideration and measure

the fitness of route.
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