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Abstract—There are often multiple routes between regions. Drivers choose different routes with different considerations. Such

considerations, have always been a point of interest in the transportation area. Studies of route choice behaviour are usually based on

small range experiments with a group of volunteers. However, the experiment data is quite limited in its spatial and temporal scale as

well as the practical reliability. In this work, we explore the possibility of studying route choice behaviour based on general trajectory

dataset, which is more realistic in a wider scale. We develop a visual analytic system to help users handle the large-scale trajectory

data, compare different route choices, and explore the underlying reasons. Specifically, the system consists of: 1. the interactive

trajectory filtering which supports graphical trajectory query; 2. the spatial visualization which gives an overview of all feasible routes

extracted from filtered trajectories; 3. the factor visual analytics which provides the exploration and hypothesis construction of different

factors’ impact on route choice behaviour, and the verification with an integrated route choice model. Applying to real taxi GPS dataset,

we report the system’s performance and demonstrate its effectiveness with three cases.

Index Terms—Route Choice Behaviour, Visual Analysis, Interaction, Route Choice Model
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1 INTRODUCTION

WIth the development of sensing technologies, a variety

of big data has been produced in urban space. Urban

computing combines urban sensing, data management, analytics

and services as an integral process, which throws light on the rich

knowledge of city and improves people lives [1]. Transportation

is one of the most essential urban computing applications. Many

transportation systems analyse the city-wide human mobility data

and other urban data (e.g., weather data) to understand the travel

behaviour [2], [3] and improve the travel experience [4].

In modern traffic networks, there are often multiple routes to

choose from when travelling from one place to another. Under-

standing how drivers make route choices, i.e., the route choice

behaviour, is an interesting topic in transportation area. It not only

assists the city planners in the improvement of route usage, but

also helps drivers make wise travelling decisions.

However, route choice behaviour is not an easy problem.

Drivers choose different routes considering different factors. The

expected time cost is one example. Choosing the route with

minimum time cost is what widely experienced in daily life.

Some other factors may also influence route decision making,

like the number of traffic lights, travelling comfortableness, etc.

Meanwhile, the impact of factors may change over time. Drivers

who care about travel efficiency on workdays, might trade it off

with the travelling comfortableness at weekends. Moreover, the

problem is even more complex when various factors interact with

each other.

Classically, research efforts have been made to study the
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influence of different factors on route choices based on Stated

Preference (SP) survey data [5]. SP survey collects the route

preferences in hypothetical situations from respondents. Different

choice considerations, such as travel safety, can be directly cap-

tured by the information in questionnaires. With SP data, various

route choice models [6], [7] are developed, trying to estimate the

impact of different factors on the route choice behaviour. However,

such investigations are limited in scale and the surveys need to be

carefully designed. Also, information obtained from investigation

is quite subjective and not practically reliable enough. In more

recent years, some researchers perform the analysis with the help

of Global Positioning System (GPS) where GPS receivers are used

to collect trajectories from volunteers. Compared to traditional

investigations, it takes less effort and is more realistic. But such

pilot studies are often conducted among a limited number of users

in a restrained spatio-temporal scale, like only collecting morning

commute trips [8], [9].

In this work, we explore the possibility of studying route

choice behaviour based on more general GPS trajectory data, i.e.,

taxi GPS trajectories. Taxi trajectories are sampled in real situation

and cover a wider spatial and temporal range. However, challenges

arise when studying route choice behaviour based on general GPS

trajectories:

• Extract relevant trajectories in the context of multiple

routes: Unlike the experimental GPS trajectories con-

strained in limited spatial and temporal range, extracting

trajectories related to multiple routes from massive trajec-

tories is a challenge to be tackled.

• Raise hypotheses on factors that significantly influence

the route choice: Different from the verification of pre-

defined factors in hypothesis-oriented experiments, it is

a challenge to detect factors that potentially influence

route choice from general GPS trajectories and verify the

significance.

Visual analytics is proposed as the science of analytical reasoning
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facilitated by interactive visual interface [10]. By integrating

computational and theory-based tools with innovative interactive

techniques and visual representations, visual analytics enables

human to participate in problem solving.
In this work, from the perspective of visual analytics, we pro-

pose a visual analytics system which leverages human interaction

and judgement in the trajectory data mining process [11] to tackle

the above challenges: with a suite of graphical filters, trajectories

between regions of interest are queried interactively; based on

filtered trajectories, feasible routes are constructed automatically;

with a list of factors derived from general GPS trajectory data,

route choice distributions over those factors are visualized, which

supports to explore and raise hypotheses on potential influence;

then the hypotheses are further verified by the statistical model to

draw reliable conclusions.
The contributions of this work are:

• We explore the possibility of analyzing multiple route

choice behaviour based on general GPS data.

• We develop a visual analytic system to explore the route

choice behaviour with real GPS data.

For the remaining part, we first report related work in Sec-

tion 2. Then in Section 3, we give an overview of the data

background, analytic tasks and overall system pipeline. Details

of route generation and visual design are explained in Section 4

and Section 5. We report the system’s performance in Section 6

and demonstrate its usage in Section 7. In Section 8, we have a

discussion on the system. Finally it comes the conclusion.

2 RELATED WORK

In this section, we have a discussion on the related work: route

choice behaviour analysis in transportation field, research progress

in visual analytics of trajectories, rank-based visualization and

route visualization.

2.1 Route Choice Behaviour Analysis

Route choice behaviour has been widely studied in the trans-

portation area. In early years, most researches are based on

statistical investigations or experiments. By analysing a total of

2182 home-to-work records in Seattle, Mannering et al. [12] find

that 26% people do not always use the same route. To find the

reasons, Khattak et al. [13] study 700 commute trips collected via

questionnaires, and find that both congestion and the perception

of alternative routes increase the probability of route changes.

With respect to personality, males, young people and experienced

drivers are more likely to change routes, as concluded by Xu

et al. [14] in a study of 247 morning home-to-work trips. In

these works, statistical inquiries play an important role, where

questionnaires are carefully designed to obtain problem-related

information involving personal details. However, investigations

are limited in both the sample range and its validity. Realism

is also a problem given the divergence between recalled and

observed circumstances.
To obtain more authentic information, some researchers base

their studies on GPS data in recent years. Li et al. [8] study

morning route choice patterns based on a GPS dataset collected

from 182 vehicles in 10 days. Factors like age, departure time and

income level are found convincingly influential. More recently,

Vacca et al. [9] study route switch behaviour between the same

OD (i.e., Origin-Destination) pair by tracking the participants with

portable GPS devices. Some dominant factors are revealed, such

as traffic light number (per km), highway percentage, perception

of time, etc. Compared with investigations, GPS records provide

more truthful measurement of route choice behaviour, with lower

costs and higher precision. However, subject to the analytical

requirement of individual characteristics, the data is still problem-

related and range-limited. Instead, our system is designed for

general GPS data covering a much larger range (tens of thousands

of taxies). One similar work is proposed by Pan et al. [15]. They

extract regular routing patterns from the historic taxi trajectories

and detect the anomaly routing behaviour that significant differ

from the original patterns. Based on social media data, they focus

on exploring semantic meaning of the travel anomalies. Different

from their semantic exploration, our work focuses on comparing

the properties of multiple routes and exploring the regular factors

that impact route choice behaviour, such as the departure time.

Meanwhile, what’s provided in our system can support interactive

data customization and real-time processing according to different

analytical demands.

2.2 Trajectory Visual Analysis

In trajectory mining field, Zheng [11] survey various mining

techinques, including outlier detection, pattern mining, etc. From

the apsect of visual analysis, Andrienko et al. [16] present a

taxonomy of generic analytic techniques based on possible types

of movement data. For trajectories, there are three kinds of visual

explorations [17]: direct depiction, pattern extraction and visual

aggregation. Direct plotting could simply fail because of visual

cluttering. Pattern extraction methods employ automatic analysis

to extract underlying data patterns [18], e.g., the traffic jam

propagation graph extraction [19]. Aggregation methods visual-

ize movement groups to reveal the high-level movement graph.

Guo [20] and Andrienko [21] et al. construct geographical regions

and visually aggregate the in-between movements as flows. Lu et

al. [22] design ODWheel to compare the traffic dynamics from

the centeral region from/to its departing/arriving regions. Besides

aggregation between regions, travel behaviour within interchange

region can also be visualized. Guo et al. [23] provide a circular

design to explore movement at a road intersection. Zeng et al. [24]

derive a visualization from Circos [25] to display interchange

traffic flow at subway transition stations.

Liu et al. [26] study the route diversity between locations and

provide a clock like radial layout to display temporal statistic

distribution. Different from analysing individual trajectories in Liu

et al.’s work, our method provides analysis based on the extracted

topology structure. Zeng et al. [27] visualize the mobility of

routes starting from a single source in public transportation system

and provide the comparison among different routes. Similar to

their routes’ comparison, our work provides comparison among

multiple routes.

Alternative to analyse trajectories as a whole, some works

perform local analysis of the filtered trajectories of interest.

Andrienko et al.’s book [28, Chapter 4.2] summarizes the different

kinds of filtering, including the spatial, temporal filtering, etc.

Marios et al. [29] introduce spatial query which specifies a

spatiotemporal pattern as a sequence of distinct spatial predi-

cates. Vieira et al. [30] design the trajectory query using regular

expression over a spatial alphabet of regions. Different from

those textural query languages, visual query languages explore

the spatial data graphically. Ferreira et al. [31] propose a visual
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TABLE 1
Table of Derived Factors

Object Attribute Description Motivation

Route

Route’s Length Route geographical length Do drivers prefer shorter route?

Traffic Light Number
Total number of traffic lights
along the route

Do drivers prefer less traffic lights?

Route Importance
The average road level of
the route

Do drivers prefer route with higher level road?

Time Cost Distribution
Time cost distribution of
a route

Do drivers prefer route with less time cost?
Do drivers prefer route whose time cost has less variation?

Trajectory
Departure Time in a Day

Departure time in the time
scale of day

Do drivers departing at different time make different route choices?

Departure Day
Departure day in the time
scale of a week

Do drivers departing on different days make different route choices?

Trajectory’s Length Total travel distance of the trip Do drivers travelling to different distances choose different routes?

query model to filter trajectories by their origins and destinations.

TrajectoryLenses [32] supports users to interactively filter the

trajectories by manipulating the lenses on the map. Similar to

TrajectoryLenses, we design a suite of circular filters in this work.

Compared with TrajectoryLenses, our design not only supports

more spatial constraints but also allows for the direction assign-

ment.

2.3 Rank-based Visualization

Ranking as an operation to organize data in order is widely used in

visualization, especially when comparing data items over multiple

attributes. Because of the linear property of ordering, ranking

technique is usually integrated into line-based visualizations [33].

Parallel Coordinates [34] visualizes multivariate data by connect-

ing items’ actual value over multiple attributes, which embeds

the ranking implicitly. Instead of actual value, Bump Charts [35]

explicitly visualizes data by order and connect order change with

slopes. One more recent ranking design is LineUp [36], which

not only visualizes the ranking changes, but also encodes the

cause of the rank. Lu et al. [37] aggregate trajectories along

a single route and rank them by the time cost along the road

segments, to reveal mainstream and outliers. Similar to those

ranking techniques, we rank routes over attributes for comparison.

However, in our case, we need to deal with dynamic route

attributes, e.g., the travel time cost attribute of a route which

ensembles the time costs from all trajectories. Some ranking

visualizations deal with dynamic changes by expanding the time

dimension. Batty [38] designs Rank Clocks to show the change

of city population rankings across several centuries, which is

similar to Parallel Coordinates but represents different time as

axes. On the other hand, keeping time continuous, Shi et al. [39]

propose RankExplorer, in which they segment the rankings into

several groups and use a ThemeRiver [40] to show their temporal

changes. Instead of expanding time, we aggregate the dynamic

route attribute samplings by trajectories and propose a ranking

visualization for attributes with single value and multiple values.

2.4 Route Visualization

To visualize a path, a well-known technique in geographical

application is the space-time cube [41], [42], which visualizes

the dynamic changes of geographical of a path in 3D space.

Tominski et al. [43] propose stacking bands in hybrid 2D/3D

view to visualize the trajectory attributes. With the metaphor of

lenses, Karnick et al. [44] place magnified lenses on the significant

points along a route, to encode more details. The other way is

to do distortion. Agrawala [45] distorts and simplies routes to

highlight important features which are similar to human drawing

maps. Alternatively, Sun et al. [46] distort the map to broaden the

roads of interest so that temporal information can be embedded.

In this work, we keep the map view undistorted to maintain easy

perception of the geospatial information of routes. With careful

design, the topological information of multiple routes is encoded.

For sufficient analysis among routes, Zeng et al. [27] present

an isotime flow map view in a parallel isotime fashion. There are

similar flow diagrams [47], [48] when broadening the horizontal

representation to temporal dimension. We derive the abstract route

view from flow diagram to show the topology structure.

3 OVERVIEW

In this section, we first introduce the data and tasks. Then we

present pipeline of the visual analytics system.

Route

Destination of Interest

Origin of Interest Trajectory

Origin 

Destination
Road

Fig. 1. Illustration of Relevant Concepts in Multiple Routes

3.1 Data

To facilitate our discussion, we list the common terminologies as

illustrated in Figure 1:

• Trajectory records a list of positions that an object travels

in temporal order.

• Origin/Destination (O/D) refers to the beginning/ending

position of the trajectory.

• Road is the physical connection between one location to

another, where vehicles can travel on.

• Route is a sequence of roads that vehicles travel through.

• Origin/Destination of Interest (OoI/DoI) refers to the be-

ginning/ending position of movement that the analyst is

interest in.

• Multiple Routes are all the travelling routes between a pair

of OoI and DoI.
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Preprocessing

Clean Trajectory Quad-tree Spatial 
Index

Taxi GPS Raw Data

Road Network Data

Raw Data

Road Network Data

Taxi GPS Dataset

Factor Computing

- Route’s Length
- Traffic Light Number
- Route Importance
- Time Cost Distribution

Route-related Factor 

Trajectory-related Factor
- Departure Time in a Day
- Departure Day
- Trajectory’s Length

Interactive Visual Analytics

Multiple Route Choices Overview (T1) Route-related Factor Exploration (T2)

Trajectory-related Factor Exploration (T3, T4)

Multinominal Logit Model

Trajectory Filtering Route Extracting

Fig. 2. The System’s Pipeline: consists of data preprocessing (pink), automatic computation (blue) and human involved visual analytic module
(yellow).

Note that OoI/DoI is not necessarily O/D. OoI/DoI can be

placed at the region of interest where multiple route choices are

concerned.

Different from the predefined factors in the controlled ex-

periments, factors in this work are directly derived from general

GPS dataset. In Table 1, factors are categorised into two groups:

route-related factors and trajectory-related factors. For each route,

some inherent attributes probably play as factors in route decision

making, e.g., the length of route, the number of traffic lights along

the route and route importance. Specifically, the route importance

refers to the average road level of the route. The road level is

distinguished by what type the road is, like a trunk or residential

road, which is implied by the highway tag in OpenStreetMap [49].

Besides those static route attributes, the time cost distribution

sampled by historical passing vehicles is viewed as another route-

related factor, whose average and variance potentially influences

the route choice.

On the other hand, each trajectory has individual differences

that potentially affect the route choice, e.g., departure time in a

day, departure day and trajectory’s length. For example, drivers

travelling in peak time and off-peak time may make different route

decisions. It is also possible for drivers to select different routes

when travelling in different distances from O to D.

3.2 Analytic Tasks

In this part, we clarify analytic tasks to explore route choice be-

haviour with general GPS trajectories. According to the typology

of visualization tasks [50], our analytic tasks are designed from

high-level to low-level. Given a pair of OoI and DoI, firstly, an

overview is given to present multiple feasible routes. Then the

route-related factors and trajectory-related factors are calculated

and visualized. It helps to build hypotheses about how factors

impact the route choices. With the hypotheses on certain routes

and factors, the system should be capable of examining the

proposed hypotheses to tell if the impact is significant.

With these considerations, the design tasks are summarized as

following:

• Overview of multiple route choices (T1): give an overview

of all feasible route choices between OoI and DoI.

• Exploration of the route-related factors’ impact on route

choice (T2): describe each route by route-related factors

and compare routes in terms of route-related factors.

• Building hypotheses of the impact of trajectory-related

factors on route choice (T3): explore the route choice

distribution over trajectory-related factors and propose

hypotheses on the potential impact.

• Evaluating the impact of trajectory-related factors (T4):

build a statistic model to examine whether the impact is

significant or not.

3.3 System Overview

To support the above tasks, we propose a visual analytic system

integrating automatic processing, visualization and interaction.

Figure 2 shows the system’s pipeline.

In the preprocessing stage, trajectories are cleaned. A quad-

tree spatial index is built to facilitate filtering in massive trajecto-

ries.

In run-time stage, trajectories between a pair of OoI and DoI

are filtered using a suite of graphical filters. With those filtered

trajectories, all feasible routes are extracted. A topology graph of

the routes is constructed using a grid-based algorithm.

For each route or trajectory, related factors (discussed in

Section 3.1) are derived. Then those routes and factors are fed

as input to the visual analytics module.

The visual analytics module consists of three parts. The spatial

visualization gives a geographical overview of the multiple routes

(T1). The route-related factor view displays the route-related

factors in a ranking diagram. Users can compare them across

different routes (T2). The trajectory-related factor view visualizes

different route choices over trajectory-related factors. This view

supports the proposal of hypothesis (T3). Then users can input

their hypotheses. A choice analysis model, i.e., Multinominal

Logit model (MNL) [51], is used for the verification (T4). After

modelling, the results are visually integrated back in the trajectory-

related factor view, to tell whether the impact is significant or not.

The three views cooperate in a brushing and linking manner,

i.e., entities selected in one view are updated in other views. At

last, users can launch a new loop of analysis by resetting the

filtering.
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4 MULTIPLE ROUTES GENERATION

For the massive taxi GPS trajectories, the system provides a suite

of graphical fitlers. They support to query trajectories intuitively

with spatial and temporal constraints. With the filtered trajectories,

a grid-based algorithm is proposed to extract all feasible routes

automatically.

4.1 Trajectory Filtering

From the temporal aspect, a two-level temporal filter is provided:

date and time. Date range is set in the date filter. Time range in

a day is set in the time filter, whose granularity is 10 minutes.

With these two different temporal granularities, the temporal filter

allows users to query trajectories in a periodic pattern, such as the

commute trips in the morning.
From the spatial aspect, we design the filter similar to Tra-

jectoryLenses [32]. The filter covers a circular area and filters

trajectories with 6 spatial constraints. The 6 constraints are defined

according to the spatial relationship between trajectory and the

underlying circular area: origin, destination, origin/destination,

passing, inclusive, and exclusive. The concepts are shown in

Figure 3(b). For example, a filter with the origin constraint filters

trajectories starting from the circular area. Besides the spatial

constraints, there are some other geometric constraints, e.g., the

center position and radius of the circular area. For usage simplicity,

constraint configuration is embedded into the circular filter. As

Figure 3(a) shows, when hovering on a certain region, certain

function is waked and the corresponding handle is shown. For

example, hovering in the center of the circle invokes the moving

function and a + handle is visible. Clicking and dragging the +
changes the center of the filter. Complex queries can be built which

combines different filters in an intersection manner. Moreover, for

two or more filters, directions can be assigned between filters

to select trajectories following certain flow directions. For the

ease of constraint perception, constraints are explicitly encoded

in the circular filter. Figure 3(b) shows the circular filters with 6

spatial constraints respectively. In this work, the first two filters

are detected as the OoI and DoI by default.

4.2 Multiple Routes Extraction

With the filtered trajectories from OoI to DoI, we employ a general

grid-based algorithm to extract multiple routes automatically. The

basic idea is to cover the trajectories by grid and then build up the

multiple route graph among cells of the grid.
Figure 4 illustrates the process of route extraction. Figure 4(a)

shows the filtered trajectories between OoI and DoI. At the begin-

ning, a uniform grid is covered over the boundary box of filtered

trajectories, which divides the space into cells (Figure 4(b)).

Trajectories are segmented by the cells and each of them can be

denoted by the sequence of passing cells (Figure 4(c)).
Each cell collects the segments from trajectories which in-

tersect with it. Then for each cell that contains segments, we

derive the average direction from trajectory segments inside it.

The directions are further approximated as horizontal or vertical

ones (Figure 4(d)). The horizontal direction is more likely the

left-right going than the up-down going and the vertical one is

more likely the up-down going. To remove the zigzag between

two cells, two types of ambiguous cells are detected: the neighbour

cells with horizontal direction which are side-by-side horizontally;

the neighbour cells with vertical direction which are side-by-side

vertically. The detected cells are merged (Figure 4(e)).

Loaction Constrain Setting

Deleting

Direction Assigning

Moving ResizingOrigin

InclusionOrigin/
Destination

PassingOrigin Destination Exclusion

(b)

(a)

Fig. 3. Circular Filter: (a) different functions are invoked by hovering on
corresponding regions. Direction between filters is assigned by dragging
from one to another. (b) 6 circular filters with different spatial constraints.

After that, routes are formed by linking the centroids of cells

(Figure 4(f)). Cells with more than one in/out degree are detected

as the splitting/merging nodes (Figure 4(g)). The multiple route

graph is constructed with these nodes and the routes connecting

them. Finally, multiple routes are encoded visually (Figure 4(h)),

which will be introduced in Section 5.1.

(c) Encode 
Trajectories by Grid

(a) Filter 
Trajectories

(e) Merge 
Ambiguous Cells

(b) Generate 
Grid

(f) Link 
Cells

(g) Construct 
Topology Graph

(d) Detect
Direction

(h) Visualize 
Graph

Fig. 4. Multiple Routes Construction: by covering a grid over trajectories,
multiple route graph is built upon travelled cells.

5 VISUAL DESIGN

In this section, we present design of visualizations in our system.

Corresponding to tasks introduced in Section 3.2, the interface

mainly consists of three parts: the route spatial view, the route-

related factor view and the trajectory-related factor view.

5.1 Route Spatial View

With the specified OoI and DoI, multiple routes are obtained by

the algorithm introduced before. To provide an overview of all the
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feasible routes (T1), the spatial view is designed with following

considerations:

• Represent OoI and DoI (CI): to locate the areas of OoI

and DoI.

• Display multiple routes (CII): to visualize the feasible

routes between OoI and DoI, including both the popular

ones and the seldom travelled ones.

• Indicate traffic flow directions (CIII): to show the travel-

ling directions along routes, especially at the intersections.

• Summarize the routing (CIV): to summarize the major

route choices by merging similar routes

After defining the filtering conditions (see Section 4.1), the

OoI and DoI circular filters are settled on the map. To indicate

OoI and DoI filters, inward and outward arrows are attached to

the circular filters respectively (CI) (Figure 5(a)).
Each extracted route is visualized as a band, whose width

encodes the number of passing trajectories. A logarithmic map-

ping is used to maintain the visibility of seldom travelled routes

(CII). Routes are stacked together when sharing the same roads.

When hovering, a tooltip is shown to facilitate selection of the

bands (Figure 5(b)). The number of travelled trajectories is also

displayed in the tooltip. The current hovered route is highlighted

both in the spatial view and the tooltip. Users can easily switch

the focus in the tooltip, in case that some routes are too small to

choose on the map.
Considering that directions in straight roads are self-evident,

we only indicate the traffic direction at the crossings of roads

(CIII) using glyphs. The size of glyph encodes the volume of

passing traffic flows. The arrow inside the glyph implies the

average traffic flow direction at the crossing.
In order to summarize the complex routing, we divide the

routes into a few groups (CIV). Each group contains a mainstream

route and some alternative routes. We first choose the popular

routes as the mainstreams. Specifically, the route whose traffic

volume is larger than third quartile Q3 of the whole traffic vol-

ume distribution are regarded as the mainstreams. The maximum

number of mainstream routes is limited to 5 in order to avoid

excessive dividing. With mainstreams determined, the remaining

are assigned to the mainstream routes according to the topology

similarity. In our case, we denote a route as a sequence of its road

crossings, and use the edit distance [52] to measure the similarity

between routes, which counts the minimum amount of switches

required to transform from one sequence to the other. We show

the grouping results in a topology graph to help understand the

routing (Figure 6(a)). Each mainstream with its similar alternative

routes are considered as a group. Qualitative colors [53] are used

to differentiate different groups. Within each group, all routes are

colored similarly, with the lightness inversely proportional to the

route popularity. Figure 6(b) shows the color legend of the two

groups in Figure 6(a). The color legend is consistent over all views.

5.2 Route-related Factor View

Inspired by ranking visualizations (e.g., LineUp [36]), we design a

ranking-based visualization to support exploration on route-related

factors’ impact on route choice behaviour (T2). The ranking-based

visualization helps users interpret how the factors affect route

choices. There are several considerations we have taken in the

design:

• Accommodate different factor types (CI): to visualize

both static and dynamic factors.

(a)

(b)

Fig. 5. Route Spatial View: (a) geographical overview of multiple routes:
the route width encodes the amount of traffic flow. The arrow glyph
at each intersection indicates the average flow direction. (b) one high-
lighted route in the road segment tooltip: all stacked routes are displayed
in the tooltip to facilitate selection.

(a) (b)

Fig. 6. Topology-based Color Scheme: (a) topological graph of multiple
routes: all routes are categorized into a few groups based on topology
similarity. (b) the global color scheme for routes based on topology-
based grouping.

• Compare factors among multiple routes (CII): to enable

the comparison of route factors.

• Explore the routes in topological relationship (CIII): to

support exploration on those routes in topological relation-

ship, i.e., similar routes.

Figure 7(a) displays the design of route-related factor view.

The view mainly contains two parts: route-related factors in the

rank list (left part) and topological relationships in the dendrogram

(right part). In the factor part, each row represents a route, whose

color is consistent with the route spatial view. In the left part

of Figure 7(a), each column represents one route-related factor.

The static factor, e.g. route’s length, is depicted by a bar whose

horizontal width encodes its value. The dynamic factor, e.g., time

cost distribution of the route, is represented by a horizontal-

aligned box plot (CI). The box plot preserves the outliers as dots.

Each factor can be ranked for comparison (CII). The rank list

can be sorted in the increasing/decreasing order by clicking the

triangle/inverted triangle buttons beside to the label. It is easy to
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(a)

(b)

Fig. 7. Route-related Factor View: (a) with ranked factors. (b) with two selected routes.

rank the static factors because of single value. However, it is not

straight forward to rank the dynamic factor, because each of them

is a distribution. Considering median as the one of the typical

representatives of a distribution, we choose to rank the dynamic

factor by median in our case. Moreover, to maintain an intuitive

visual tracking of routes, factors belonging to the same route are

connected by the semi-transparent links (see Figure 7(b)).

(a)

(b) (c)

Fig. 8. Two Types of Topological Relationships: (a) encodes how the
routes split from others. (b) encodes the similar groups in terms of the
edit distance. (c) by clicking the corresponding node, a group of routes
in certain topological relationship can be selected.

It is interesting to compare routes in close topological rela-

tionship, which is driven by the curiosity of how the similar routes

(i.e., routes with overlapped parts) differ in route-related factors.

Hence, to support topological exploration (CIII), two types of

topological relationships are integrated in the right of the view

(Figure 7(a)): the tree structure and the node-link structure. These

two different types measure the topological similarity between

routes from different perspectives. Figure 8(a)(b) illustrate them

and their visual encoding respectively. In the tree structure (Fig-

ure 8(a)), from right to left, the hierarchical structure shows how

the routes split apart. In the node-link structure (Figure 8(b)), it

shows the groups of similar routes according to the edit distance,

which has been introduced in Section 5.1. Uesrs can not only

select each single route in the views, but also select a group

of routes. As Figure 8(c) shows, the nodes in the topological

structure can be clicked to select several routes. Especially, in

the tree structure, routes in coarse to fine similar relationship can

be selected by the nodes from right to left.

5.3 Trajectory-related Factor View

As discussed in Section 3.1, trajectory-related factors are impor-

tant to explain the route choice diversity. Three trajectory-related

factors are derived from general GPS trajectories. In this section,

we first introduce the statistical model used to validate the factor

impact. Then we present the visualization and interactions that

help with hypotheses construction (T3) and verification (T4). To

simplify the discussion, we call the trajectory-related factors as

’factors’ in this section.

5.3.1 Multinomial Logit Model

To verify factors’ impact on route choices, we adopt the Multino-

mial Logit (MNL) model [51]. It is simple, understandable, and

widely used in the transportation area for route choice analysis [54,

Chapter 7.3]. The basic assumption of MNL is that people always

choose the option with the maximum utility. Assume that there

are M people choosing from N routes, the utility is measured as

follows:

Ui j = βββ iXXX j + εi, i = 1, · · · ,N, j = 1, · · · ,M (1)

The Ui j here represents utility of the i-th option assessed by the

j-th person. It consists of an observable part βββ iXXX j and an unknown

part εi. The XXX j vector denotes observable factors of the j-th person,

like the age, weight, height, etc. βββ i is the coefficient vector of

option i, a major output of the model. With the maximum utility

assumption, the probability of person j choosing option i can be

derived as follows:

Pj(i) = Pr(Ui j >Uk j),∀k ̸= i (2)

To eliminate the unknown term, probability is expressed explicitly

in the MNL model as:

Pj(i) =
eβββ iXXX j

∑N
k=1 eβββ kXXX j

(3)

From the equation ( 3), we can see that the probability varies

monotonously with the observable term:

βββ iXXX j =
D

∑
t=1

βitXjt (4)

Here, D denotes the number of observed factors, and the

coefficient βit depicts the impact of factor Xjt on option i. The
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model can be further simplified by setting a basic option, e.g.,

option m. Other probabilities are made relative to the base:

ln(Pj(i))− ln(Pj(m)) = ln(
eβββ iXXX j

eβββ mXXX j
) = (βββ i −βββ m)XXX j = βββ

′

iXXX j (5)

The new coefficient βββ
′

i shows the impact of factors xxx j when

choosing between option i and m. This term can be expanded

into βββ
′

iXXX j = ∑D
t=1 β

′

itXjt . Specifically, if β
′

it is positive, the person

is more likely to choose option i over the base option m, when

Xjt increases. Otherwise, the person prefers the base option m

when Xjt increases. This exactly explains how the factor influences

the final choice. The result is only meaningful when it is tested

significant. So we also derive the confidence level (p-value) to

verify the significance of the impact. All in all, the coefficient

matrix βββ
′

i along with the p-values, can validate the influence of

factors on route choices.
In our context, it is worth studying why some people did not

choose the major route. Hence, we set the most popular route

(i.e., the route followed by most trajectories) as the base option

m. There are 3 observable factors, i.e., departure time in a day,

departure day and trajectory’s length (discussed in Section 3.1).

However, not all factors Xjt are numerical. The trajectory’s length

is numerical, so it is easy to explain what happens when the trip

is longer. But the other two factors, i.e., the departure time in

day and departure day are ordinal. There is intrinsic chronological

order but not the numeric order. For example, Saturday is chrono-

logically later than Friday, but not numerically larger than Friday.

To solve this problem, those two ordinal factors are divided into

C categories. C−1 binary variables are introduced to indicate the

absence or presence of certain category. Hence, when Xjt comes

to the departure time in a day or departure day, it becomes a vector

of dummy variables [D jt1 ,D jt2 , ...]:

D jtc =

{

1, x jt ∈ [rc−1,rc]
0, x jt /∈ [rc−1,rc]

,c = 1,2, ...,C−1 (6)

Each binary variable acts as an independent sub-factor and

its impact on route choices are studied. Different configurations

of C and [rc−1,rc] of each category investigate potential different

impact. In our system, users are allowed to interactively divide

a factor and customize dummy variables. This part will be intro-

duced in Section 5.3.2.
Figure 9 shows an example of the input and output of the MNL

model. Suppose the blue route is the basic route option and the

departure time in a day is categorized into three categorizes. Then

two binary variables are imported: 7:00 9:00 and 16:00 19:00.

The matrix of βββ
′

it shows the impact of dummy variables. We can

see that when departuring between 7:00 to 9:00, people are more

likely to choose the orange route over the blue route.

7:00~9:000

2 16:00~19:00

0.8 *

- 0.3

- 0.1

- 0.1

Orange VS Blue Red  VS Blue

* p - value < 0.05

Departure Time in a Day

Fig. 9. An Example Coefficient Matrix Output of MNL Modelling

5.3.2 Visual Design

Besides the model, we design the trajectory-related factor view.

Users can observe factors’ distributions and route choices, build

hypotheses. Specifically, the trajectory-related factor view takes

charge of two analysis tasks: one is to support the exploration of

trajectory-related factors, and help users build hypotheses (T3);

the other one is to verify those hypotheses, to see whether the im-

pact is significant or not (T4). For the latter task, MNL statistical

analysis model is applied, which can be configured interactively

via the interface.

In general, the view is designed with following considerations:

• Compare factors across multiple route choices (CI): to

help users see how factors changes affect route choices,

which facilitates the raising of hypotheses on potential

impact.

• Configure the statistical analysis model (CII): to support

customization of the model, so as to validate different

assumptions.

• Indicate the factors’ impact on route choices (CIII): to

show the credible conclusions about the factors’ impact on

multiple route choices.

Figure 10 shows the designed visualization for one factor, the

departure time in a day. Given the above three considerations,

it is composed of three parts: the stacked bar chart, the factor

configuration panel, and the factors’ impact matrix. The stacked

bar chart visualizes the distribution. Factor configuration panel

configures the modelling and finally the factors’ impact matrix

shows the analysis result.

Stacked Bar Chart

Factor Configuration Panel Factors’ Impact Matrix

Fig. 10. Trajectory-related Factor Views: the stacked bar chart (left-top)
visualizes distribution; factor configuration panel (left-bottom) supports
factor customization; factors’ impact matrix shows the output.

Dividing factor into interval bins, the population of certain

route choice within each bin are counted. To visualize the pop-

ulation over bins, we choose bar chart which is widely used

to display the distribution over the discrete bins. Shared space

technique is more efficient for comparison in small visual spans

than separate space [55]. Hence, bars of multiple route choices are

stacked to share the space, i.e., the stacked bar chart. We use it to

support the comparison over different route choices and explore

the population changes. Meanwhile, stacking bars of different

route choices together makes it easy to check the ratio of route

choices in the same bin. The left-top part of Figure 10 shows an

example of the stacked bar chart, which visualizes the distribution

of three route choices over departure time in a day. The color

legend is consistent with the other two views. Stacking multiple

routes in a superposition layout makes it intuitive to locate the

dramatic change of trajectory volume with certain route choice,

which probably indicates a potential impact (CI). For example,

trajectories choosing the orange route dramatically increase on 9

oclock, compared to other time in the day (Figure 10). Based on

stacked bar chart, several interactions are developed. The number

of trajectories is visible when hovering on a certain bar. Bars of

the same route are shifted to horizontal axis when a certain route

is selected.
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With hypotheses raised by visual exploration in stacked bar

chart, the factor configuration panel supports to customize ordinal

factors into categories, serving as the input of MNL model (CII).

In the left-bottom part of Figure 10, a gray band marks the range

of a category, which is labelled by an index. As discussed in

Section 5.3.1, by changing the number of categories C and value

range of certain category [rc−1,rc], users can investigate different

hypotheses. As Figure 11 shows, several interactions in the panel

enable users to directly manipulate the C and [rc−1,rc]. Similar to

the interaction design in trajectory filtering, hovering in different

regions invokes the different functions. Hovering on the gray

band highlights current category. Hovering near the left or right

boundary of the band invokes the range adjusting function. By

clicking and dragging, users are able to change the [rc−1,rc] of

current category. Hovering on the central index, a menu is popped

out to provide editing options of C. Users can add, delete or merge

the categories. For example, by clicking the ’+’, a new category

is created.

Origin

Highlight Adjust Merge Add Delete

Fig. 11. Interactions to Configure Factors: hovering on different regions
invoke different functions, e.g., adding a new category.

After factor configuration, the MNL model is used for statisti-

cal evaluation. Results are returned as a coefficient matrix. To keep

the results precise as well as intuitive (CIII), we visualize them

right in the matrix. As the right of Figure 10 shows, a matrix

displayed aside the stacked bar chart, which visually encodes

the coefficient outputs of MNL in Figure 9. The blue route with

maximum trajectory number selected as base option is visualized

at the top-right corner. Indices of categories are marked on the

left of each row. For each cell in the matrix, the coefficient is

directly printed to preserve the precision of result. Those cells with

significant impact (95% certain) are highlighted in corresponding

route colors to make it more distinct from others, which are drawn

in dashed frame.

6 IMPLEMENTATION AND PERFORMANCE

A prototype system is developed to verify the effectiveness of

our method. In this section, we first introduce the experiment

dataset and implementation detail. Then we report the system’s

performance.

6.1 Input Data

We take the GPS dataset recorded in Beijing as the experiment

data. The data is collected from 28,519 taxis in 24 days, from

March 2nd to 25th, 2009. The data size is 34.5 GB in total and

consists of 379,107,927 sampling points. The sampling rate is

every 30 seconds. Each sampling point contains the following

attributes: time, latitude, longitude, speedmagnitude, direction

as well as a boolean CarryPassengerState. CarryPassengerState

is a tag indicating whether the taxi carries passengers or not. In

this work, we only use the trajectories with passengers, each of

which can be identified by ID.

Besides the taxi GPS dataset, the road network data is collected

from OpenStreetMap’s jXAPI [49]. Following an existing pa-

per [19], trajectories are cleaned and matched to the road network

in the data preprocessing step. The final data size is 12.1 GB.

6.2 Implementation

The system is mainly written in C++, with Qt framework. The

rendering is performed with both OpenGL and Qt GraphicsView

framework. A third-party library Graphviz [56] is used to do the

topological graph layout in route visualization. A MatLab [57]

extension is integrated in the system to perform the MNL analysis.

As introduced in Section 4, trajectory filtering supports to

narrow the scope of analysis down to trajectories related to certain

OoI/DoI pair, which are fed into the extraction of multiple routes

and the further visual analysis. Several strategies are adopted to

facilitate the filtering.

In the preprocessing stage, trajectories are indexed by a spatial

quadtree, which divides the 2D spatial region recursively and

adaptively based on the distribution of trajectories’ sampling

points. Each quadtree node stores the IDs of trajectories that inter-

sect it. In the run-time stage, a filtering operation is conducted in

three steps: in the coarse filter step, the system fetches trajectories

from the quadtree nodes where the circular filter locates; in the

intermediate filter step, the top N trajectories (e.g., N = 100 in

this work) which satisfy the filtering constraints are returned and

rendered; in the fine filter step, trajectories satisfying the filtering

constraints in the whole dataset are filtered.

To ensure interactive filtering, the fine filtering step is not

performed during dynamic filtering. For example, during the

procedure of moving or resizing the circular filter, only the top

N trajectories are returned and rendered. Once the filter is settled

down, the fine filtering step is performed. Meanwhile, when

multiple filters are applied, the filtering is conducted based on the

previous filtered trajectories recursively, where the query space is

much smaller than the whole data set.

6.3 Performance

The system’s performance is tested on a Dell T3400 workstation

with an Intel(R) Core(TM)2 2.66 GHz, 4 GB RAM and a NVIDIA

Geforce GTX 470 GPU. The performance of filtering serves as the

basis of the system so that it is crucial for the overall performance.

As the basis for more complex filtering, performance of the

first filter is essential. The filtering performance under different

days are tested and Figure 12 gives the result. Filtering are

sampled at seven different locations to alleviate the bias caused

by spatial locations. As Figure 12 shows, the time cost of the

first filter scales well over 24 days in the experiment dataset.

The average time cost of filtering trajectories per day is around

0.76s. Variation of time cost arises among different locations. The

extreme outlier of time cost is a filter in a busy traffic area, almost

400 trajectories filtered per day. Notice that Figure 12 gives the

time cost when the first filtering is settled down. During users’

dynamic filtering (introduced in Section 6.2), top 100 trajectories

can be returned immediately in the system. Users can set filtering

smoothly independent from the temporal range. When filtering

settled down, time cost is inevitable as the time range increases.
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However, the system handles the latency in predictable response

time.
Further filtering by multiple filters or advanced filtering setting

is conducted based on the result by the first filter. Because filtering

space is greatly narrowed down as well as trajectories are loaded

in memory, this step costs greatly less. Averagely, it costs less than

1s to filtering in hundreds of trajectories.
For the multiple route extraction, the computational complex-

ity is O(n3). Given hundreds of trajectories, it averagely costs no

more than 5s to extract the routes. Taking Case 2 (Section 7.2) as

an example, it takes around 7s to filter trajectories in 7 days and

3.6s to extract the routes.
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Fig. 12. Performance of the First Filtering over Different Days: it costs
averagely 0.76s to filter trajectories per day, which scales well as the
number of days increases.

7 CASE STUDY

In this section, with the Beijing GPS dataset (introduced in

Section 6.1), we report three cases to demonstrate how the vi-

sual interface facilitates the exploration of multiple route choice

behaviour.

7.1 Case I: Overview of Multiple Route Choices

In this case, we demonstrate some examples to explore multiple

routes in Beijing (T1), in which trajectories are filtered in the

whole 24 days. Beijing adopts the ring and radial highway system.

The ring roads (ranked as 1st , 2nd , etc.) provide rapid access

around the city, while the radial highways provide rapid access

between ring roads. Basically, there are two types of travelling.

One is made along the ring road and the other is travelling

between different ring roads. Multiple route choices containing

these two different travellings are explored in this case. As the

Figure 13(a)(b) shows, we set the OoI and DoI filters on different

ring roads. To be specific, the ring roads are shown horizontal

here, while the radial ones are shown vertical. In Figure 13(a),

the OoI is on the 4th ring and the DoI is on the 2nd ring road

respectively. Similarly, in Figure 13(b), the OoI is set at a business

district on the 3rd and the DoI is set at the transportation hub

on the 2nd . For both two examples, lots of multiple routes are

extracted. Besides routes choosing the main ring road to travel,

there are many alternative routes travelling in the radial byways

connecting the ring roads. In Figure 13(c), OoI and DoI are both

set on the 2nd ring road, but at two transportation hubs respectively.

(a) (b)

(c)

Fig. 13. Case Study #1 Overview of Multiple Route Choices: (a) multiple
routes from the 4th to 2nd ring roads (b) multiple routes from 3rd to 2nd

ring roads. (c) multiple routes when travelling among the same 2nd ring
road.

The route choices between these two places are much less than the

above two. The majority of drivers choose to follow the main ring

road without branching. However, a few drivers make different

choices at some road segments.

7.2 Case II: Exploring the Route-related Factors of Mul-
tiple Routes

In this case, we demonstrate how the system supports to explore

the route-related factors of multiple route choices between inter-

ested regions (T2). With the route-related factor view, users are

able to compare different route-related factors among multiple

routes, and study how those factors impact the route choices.

As Figure 14(a) shows, the OoI and DoI is set at Beijing

Airport and a central business district in down-town area respec-

tively. With several filters with exclusion constraint, a few dirty

trajectories caused by the error or misreport by GPS devices are

filtered out. After that, there are 192 trajectories travelling from

Beijing Airport to the business center, from March 2 to March 8

2009.

Figure 14(a) shows all the feasible routes between these

two regions extracted from the filtered trajectories. Routes are

categorised into two groups according to topological similarity.

Figure 14(c) gives the color legend of the two groups. The group

of routes in warm color chooses the upper highway, while the

group in cold color chooses the bottom one. For both groups, there

is one or two mainstream route choices with dominant popularity,

and several alternative choices with small amount of trajectories.

Those alternative routes leave the main choice to other seldom

chosen roads somewhere. To obtain a general understanding of
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(a) (b)

(c) (d)

Fig. 14. Case Study #2 Exploring Route-related Factors of Multiple Routes: exploring route choices from Airport to a commercial district: (a) the
spatial overview. (b) three selected popular routes. (c) route-related factors’ comparison among the selected routes

the route choices, the three most passed routes are selected. As

Figure 14(b) shows, the three routes share some common roads

in the beginning but soon the blue one splits from the other two.

Subsequently, after travelling some distance, the red and orange

routes head into different directions respectively. Finally, the blue

and orange routes meet with each other. Among the three route

choices, nearly 60% taxi drivers choose the blue one, 20% choose

the orange one and nearly 15% choose the red one. The left 5%

choose the other less travelled routes.

By ranking factors in the route-related factor view (Fig-

ure 14(d)), the three selected routes are compared. Although the

blue route has the longest travel distance, it has the least traffic

light number and highest route importance. The blue route is the

one occupying the largest ratio of highway roads comparing to the

red and orange routes. Ranking the factor ’Travel Time Cost’ in

the ascending average time cost order, we can see that the blue one

has the smallest average value. The second comes to the orange

one and finally the red one. Meanwhile, the blue one gets the

smallest variance, i.e., time cost of the blue route is more reliable

and predictable because of its small variability. Although their

advantage in travel distance, time cost distribution of the red and

orange routes are more stretched, which may be caused by the bad

traffic when travelling on the ring roads in down-town. Hence, in

this case, it is observable that when travelling from Airport to the

business district, most of drivers would like to choose less and

more predictable time cost rather than short travel distance.

7.3 Case III: Exploring the Trajectory-related Factors’
Impact on Multiple Route Choices

In this case we show how the system helps to analyze the

trajectory-related factors’ impact on route choices, from hypothe-

sis construction (T3) to statistical verification (T4).

Travelling between regions at different ring roads is very

common in Beijing. Taking it as an example, we place the OoI

filter on the 3rd north ring road and the DoI filter at the 4th

north ring road. 296 trajectories travelling through are filtered from

March 2 to March 8, 2009. Figure 15(a) shows that the top three

most popular routes, i.e., the blue, red and orange. The blue one

has much larger popularity than the other two. Their route-related

factors are ranked in the ranking view (Figure 15(d)). Overall,

the top three routes have advantages over those seldom travelled

routes in static route-related factors, i.e., the route distance, traffic

light number as well as the route importance. Furthermore, the

blue route ranks top within the three routes. In the column of travel

time cost, the ranking order by median time cost is consistent

with that of route’s popularity. That is, the more chosen route has

the smallest average time cost. This indicates that drivers tend to

choose the route with less time cost.

To explore the trajectory-related factors’ impact on choice

among the three major routes, their distributions over factors

are visualized in Figure 15(b). In this view, it can be obviously

observed that the population of the orange route increases dramat-

ically around 9 o’clock in the morning when comparing to other

time in a day. Similarly, the blue route gains a lot of traffic volume

during early evening, at around 18:00. These observations give a

rise to the hypothesis that drivers may have larger probability to

choose the orange route in the morning, and the blue route in the

evening. Based on the hypothesis, we configure the factor, i.e., the

departure time in a day, into three corresponding categories, 7:00

- 10:00, 16:00 - 19:00 and the remainder. Together with default

configuration of the other two factors, we run MNL to verify the

hypothesis. The output of route choice model is given in factor
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(a) (b)

(c)

(d) (e)

((c))

Fig. 15. Case Study #3 Exploring Trajectory-related Factors’ Impact on Multiple Route Choices: setting the OoI filter on the 3rd north ring road and
the DoI filter at the 4th north ring road, (a) route spatial view of three selected major routes. (b) trajectory-related factor view. (d) route-related view
with selected three routes; (c) selected departure time range; (e) travel time cost distribution of the three selected routes during departure time
range in (c).

matrix in Figure 15(b). Taking the blue route as the base route,

the orange rectangle indicates that departing in the morning (7:00

- 10:00) significantly improves the odds of choosing orange route

than the blue one. That is, when travelling in the morning peak,

drivers have larger probability to choose orange route than the

blue one. As Figure 15(c) shows, by selecting the trajectories

travelling during this time period, the distribution of time cost

in the route-related factor view is updated as Figure 15(e) shows.

During this period of time, the average time cost and its variance

of blue route increases. Comparing with the blue one, although

the average time cost of the red and orange are larger than the

blue one, their time costs are more reliable during this period.

It might be the reason why drivers give up the blue and choose

those two. Another interesting point shown by the model is that

the odds for both the red and orange routes is tested increasing as

the trajectory’s length increases by the model. It can be explained

by either the difference of route length or the impact of trajectory’s

length, which needs to be further explored.

8 DISCUSSION

So far we have clarified the data background and tasks of route

choice analysis. We have also introduced the visual analytic

system, which allows users to interactively explore route choice

behaviour with real taxi GPS data. In this section, we discuss the

limitations and further improvements.
First of all, compared to other research based on experimental

data, the scope of performing route choice analysis based on

general GPS data is different. It is mainly defined by the factors

which can be derived from uncustomed general GPS data. As

discussed in Section 3.1, we propose two types of factors (i.e.,

the route-related factor and trajectory-related factor) from the core

properties of general GPS dataset. Basically, the trajectory-related

factors are derived from the spatial and temporal properties of

GPS data, which are universal in other movement dataset. And the

route-related factors are derived from the route properties, which

are independent from what GPS dataset are used. Hence, the scope

of using general GPS dataset to study route choice behaviour are

explored at its minimum to ensure the universality in this work.

However, it is not limited to this minimum scope. Our method

can be easily extended to include more properties with richer

semantics.

For example, speed is a common attribute in GPS data. We

take speed as the inverse attribute to time cost, which has been

already considered in this work. More advanced information, such

as traffic jams, can be derived from speed and serves as a new

factor, which is interesting for future work. Another example is

that some taxi GPS dataset carries the property of cab fare for each

journey, which also acts as a potential trajectory-related factor.

New factors can be integrated in the trajectory-related as the three

trajectory-related factors do in this work. Similarly, if there are

more route properties, e.g., the score of landscape along the route,

they can be appended to the ranking-based visualization as new

factor columns. One of the future work is to make it more flexible

to plug in new factors, which can use either XML/JSON or visual

language for the factor configuration.

Except the properties derived from trajectories or routes, social

events (e.g., road construction, concert event, etc.) which possible

influence drivers’ route choices are not included in this work.

Fusing our system with other datasets from different sources such

as social media will be potentially interesting. Also, the impact

of subjective factors are not included in our work. For example,

the impact of the drivers’ travelling experience on route choice is

out of the scope because it is unavailable in the general dataset. If

there is this kind of drivers’ profile data, it would be interesting to

fuse the information of drivers into our system. And then, how to

protect the privacy may be one of the critical challenges.

Another problem is about the route choice model introduced

in Section 5.3.1. One limitation is that the preference is only
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compared between other routes and the base routes. Currently,

it is quite hard for users to compare two arbitrary route choices. In

the next step, instead of preference over a basic option, we plan to

provide the preference analysis among several route choices. Cur-

rently, our system integrates the MNL model. Although it is one of

the most widely used choice analysis models, there are some other

discrete choice modelling methods that can be embedded, such as

the Mixed Logit. In our system, the modelling computations are

loosely plugged by a flexible Matlab Engine [57], which is easy

to be replaced if necessary.

9 CONCLUSION

In this paper, we explore the possibility of studying route choice

behaviour based on taxi GPS trajectories. Compared to classical

route choice analysis method, our general GPS based solution

covers larger temporal-spatial range as well as larger number of

samples. In this work, we list the factors that can be derived

from trajectories, which defines the boundary of this general

GPS data based solution. With this, we present a visual analytic

system which supports tasks from route choice overview to verify

factors’ impact on route choice. The system’s visualizations and

interactions are designed carefully according to task-oriented

considerations. The system allows interactive visual exploration

in massive trajectories and factors exploration with route choice

model. With Beijing taxi GPS trajectory dataset, we demonstrate

three case studies to show the system’s effectiveness.

In the future, we would like to apply the system to more

datasets. For example, applying to trajectory datasets in different

areas, we probably are able to compare the route choice behaviour

of drivers over different regions. Meanwhile, we would like to

improve and extend our system regarding the current limitations.

Besides what is discussed in Section 8, there are two possible

research directions. Considering that the input factors are fixed,

we will improve the system to support the creation of factors. For

example, OD distribution can be one of the possible trajectory-

related factors. Another interest point is to extend to the system

with route advisory function. By taking the analysis of route

choice, it is possible to recommend routes by taking different

factors into consideration and measure the fitness of route.
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