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Figure 1: Interface of TrajRank: A. spatial-temporal view: supports trajectory filtering and route segmentation; B. horizon graph view: shows the
distribution of trajectories over a day; C. ranking view: provides visualization and exploration of trajectories by ranking; D. menu panel; E. part of
spatial temporal view, drawing bands over road segments encoding the average (the blue ones) and variance (the gray ones) of travel time.

ABSTRACT

In this paper, we propose a novel visual analysis method TrajRank
to study the travel behaviour of vehicles along one route. We
focus on the spatial-temporal distribution of travel time, i.e., the
time spent on each road segment and the travel time variation in
rush/non-rush hours. TrajRank first allows users to interactively se-
lect a route, and segment it into several road segments. Then trajec-
tories passing this route are automatically extracted. These trajec-
tories are ranked on each road segment according to travel time and
further clustered according to the rankings on all road segments.
Based on the above ranking analysis, we provide a temporal distri-
bution view showing the temporal distribution of travel time and a
ranking diagram view showing the spatial variation of travel time.
With real taxi GPS data, we present three use cases and an informal
user study to show the effectiveness and usability of our method.
Keywords: travel behaviour, ranking visualization, filtering

Index Terms: H.5 [INFORMATION INTERFACES AND PRE-
SENTATION]: User Interfaces—Graphical user interfaces;

1 INTRODUCTION

Understanding how vehicles move along a route is a basic task in
traffic analysis. It can help road users better schedule their trips and
avoid congestions. It can also help traffic administrators assess the
traffic condition and identify traffic bottlenecks. Although real time
traffic monitoring and prediction are already mature, and available
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in most online maps, e.g. Google Map, most of them only provide
aggregated traffic condition of a road but do not reveal the micro-
behaviours of vehicles. Vehicles’ travel behaviour analysis is also
important, which is complementary to the traffic monitoring and
prediction.

In this work, we focus on exploring vehicles’ travel behaviour
on a route. We specifically study how the travel time change on
different road segment and at different occurrence time. Our study
of travel behaviour consists of the following aspects:

e Overview of travel behaviour, e.g. what is the mainstream
and outlier behaviour?

o Relationship between travel behaviour and road segments,
e.g. which road segment affects travel behaviour most?

o Relationship between travel behaviour and trip’s occur-
rence time, e.g. how does the vehicle behave when vehicle
starts at different time?

Taxis are viewed as sensors of the city traffic situation. Therefore
we treat them as reasonable sampling of real traffic flow and use
them to study the vehicles’ travel behaviour.

Several critical issues should be considered in this study. The
first issue is to extract trajectories moving on a certain route from
massive taxi GPS dataset. A user interface has to be defined to sup-
port easy interactive filtering. The second issue is to summarise the
travel behaviour of these trajectories. Since analysing trajectory in-
dividually is not scalable, summary is important. Still the summary
should be intuitive and easy to understand. The third issue is to
correlate travel behaviour with occurrence time and road segment.
We especially need to consider the temporal granularity and spatial
granularity (road segmentation). They are not fixed and are subject
to change according to different analysis demands.



Considering those issues, we develop TrajRank, a visual analy-
sis method based on trajectory ranking. We first provide a suite of
interactions to support trajectory selecting and road segmentation.
Then we summarise the travel behaviour of these trajectories based
on their travel time rankings along the route. This is achieved with
a ranking diagram design, which merges trajectories with similar
rankings on all road segments as bands. Each band corresponds
to one kind of travel behaviour. To correlate travel behaviour with
occurrence time and road segment, we further provide a tempo-
ral view, a spatial view and a box-plot for multi-perspective explo-
ration.

The major contributions of this work are as follows:

e We propose a ranking based visual analysis method to study
taxi travel behaviour on a route.

e We develop an interactive system to support ranking based
explorations of taxi travel behaviour, and we evaluate it with
use cases and a user study.

2 RELATED WORK

In this section, we review related work in four categories: taxi
data analysis, travel time visualization, interactive trajectory filter-
ing and ranking data visualization.

2.1 Taxi Data Analysis

Many kinds of problems can be studied with taxi data, including
land-use classification [21], route recommendation [31], outlier de-
tection [33] and traffic prediction [5]. In this work, we use taxi data
to study travel time pattern and its influence factors. It is mainly
related to traffic outlier analysis and traffic prediction.

For traffic outlier studies, Zheng et al. [33] detect flawed traffic
connections between different urban regions. Then they summarize
the flawed connections based on mining frequent patterns and as-
sociation rules. Wang et al. [28] detect traffic congestions on each
road, and structure them with congestion propagation graph. In this
paper, we not only study the travel time outliers along a route, but
also the mainstream patterns.

For traffic prediction studies, Castro et al. [6] have built a city
scale traffic flow model for traffic prediction, where the capacity of
each road segment is estimated from historical taxi data. Huang
et al. [14] focus on predicting travel destination. To cope with
”data sparse problem” in prediction, they synthesize new trajecto-
ries from decomposed sub-trajectories. In comparison, our focus is
to summarise historical traffic pattern, which can potentially help
to make more accurate traffic predictions.

2.2 Travel Time Visualization

Travel time is a crucial index to measure urban transportation qual-
ity. It has been widely studied in visualization community. An
overview of the travel time within a whole city can be provided by
the time-distance transformation [8] technique. Such a technique
chooses a central location and distorts the map so that the distance
of any location to the central location is proportional to the travel
time. However, this technique is limited to one snapshot or the
average condition of the urban traffic. It is not able to show its dy-
namics. Wu et al. [30] instead propose BoundarySeer to visualize
the dynamics of the reachable boundary, e.g. the regions accessible
from a central region in 30 minutes. With multiple linked views,
they are able to analyse the spatial temporal patterns of boundary
change.

Our work does not try to analyse the travel time within a whole
city. Instead, we focus on a specific route. Route level travel time
analysis have been addressed by a few existing works. For exam-
ple, Zeng et al. [32] have built a travel time model on public trans-
portation system. They are able to estimate the travel time on each
route, and show its temporal variation and spatial decomposition of

travel time. Liu et al. [19] have studied the route diversity problem.
Given routes, they show the temporal variation of trajectory num-
ber and travel speed. Tominski et al.’s trajectory wall [25] is based
on stacking different trajectories in 3D space, which is able to show
the spatial variation of movement attributes, including travel time.
The fundamental difference between our work and these existing
works is that we use a ranking based methodology. We study the
travel time ranking change on each road segment.

2.3 Interactive Trajectory Filtering

As our taxi dataset is in city scale, and each time we only focus on a
specific route, we need to filter the trajectories on this route. Trajec-
tory filtering has been widely studied, and different kinds of filters
has been summarized in Andrienko et al.’s book [2, Chapter 4.2].
The filtering tools can be implemented in different ways. One way
is based on visual query languages [7], where users specify query
composition by direct manipulation on icons and menus [1]. In
this work we implement fully interactive filters similar to Trajecto-
ryLenses [18]. It allows users to extract trajectories from a common
origin and a common destination. The origin and destination are
defined by interactive lenses. Ferreira et al.’s system [20] for New
York taxi exploration also has a similar design to filter trajectories
by their origins and destinations.

2.4 Ranking Data Visualization

Ranking is a common analysis method. It is frequently used in visu-
alization [23, 22]. In many cases, analysts can get multiple rankings
with different criteria. Kidwell et al. [16] propose to generate an
overview of these rankings with MDS projection [29] and heatmap
techniques. In order to compare these rankings, Behrisch et al. [4]
present a small multiple view of circular glyphs. Each glyph sup-
ports the comparison of a pair of rankings. Gratzl et al. [10] con-
sider to rank items with multiple attributes, assuming that the rank-
ing criteria is a linear function of those attributes. Their LineUp
design not only shows the difference between different rankings,
but also indicates the cause of such difference.

Ranking can change with time, and analysis of such dynamic
change is crucial. Batty [3] has designed Rank Clocks to show the
change of city population rankings across several centuries. Their
design is similar to a parallel coordinates [15]. When large number
of items are ranked, the above visualization can be very cluttered.
Therefore, Shi et al. propose RankExplorer [24], in which they seg-
ment the rankings into several groups and use a ThemeRiver [13]
to show their temporal changes. Specially designed glyphs are em-
bedded in the ThemeRiver to show the number of items that jump
between different ranking groups. In order to avoid cluttering, we
also use a grouping strategy like RankExplorer [24]. However, we
not only group travel times on each road segment, but also group
trajectories based on the travel times on all road segments.

3 SYSTEM AND DATA

In this section, we provide an overview of our system and discuss
the data used in the experiment.

3.1 System Overview

TrajRank provides an interactive visual analytic method for taxi
travel behaviour exploration on a route. The major idea is rank-
ing. Figure 2 shows its workflow. TrajRank takes taxi GPS data and
road network data as input. In the offline pre-processing stage, GPS
trajectories are cleaned and matched to road network. A quad-tree
trajectory index is built on map to facilitate filtering. In the runtime
visual analysis stage, trajectories can be filtered by a suite of spatial-
temporal filters and TrajRank detects the most passed route. Then
this route is divided into road segments. For each trajectory, travel
time on each road segment is computed. On each road segment,
the travel time of different trajectories are clustered into groups,
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Figure 2: The Workflow of TrajRank consists of an offline preprocessing stage and a runtime visual analysis stage.

and these groups are ranked by average travel time in ascending or-
der. A ranking score will be calculated for each trajectory, based
on which the trajectories are clustered into groups. Each trajectory
group represents a kind of travel behaviour. The ranking is visual-
ized and supports interactions for further exploration.

The above workflow is supported by a carefully designed user in-
terface. As shown in Figure 1, the interface consists of four views:
a spatial-temporal view, a horizon graph view, a ranking view and a
menu panel. In the spatial-temporal view, users interactively define
spatial-temporal filters and configure of route segmentation. The
horizon graph view displays temporal distribution of selected tra-
jectories over a day. The ranking view supports trajectory ranking
analysis. It consists of three components: a ranking diagram, an
occurrence temporal distribution view (temporal distribution view
for short) and a modified box-plot. The ranking diagram visualizes
trajectories ranking over road segments. The temporal distribution
view displays the distribution of trajectory groups with respect to
occurrence time. The modified box-plot gives a statistical descrip-
tion of travel time on each road segment. Such statistics is also
shown in the spatial view and encoded by the width of each road
segment band.

3.2 Data

Our GPS dataset is a real taxi dataset recorded in the city of Beijing.
In 24 days, from March 2nd to 25th, 2009, the GPS trajectories
of 28,519 taxis are collected, consisting of 379,107,927 sampling
points. The data size is 34.5 GB. Each sampling point contains
record of time, latitude, longitude, speedmagnitude, direction,
plus a boolean CarryPassengerState, indicating whether there are
passengers in the taxi. The sampling rate is one point per 30 sec-
onds. To perform our study, we also use Beijing’s road network
dataset, available from OpenStreetMap’s jXAPI [9].

Following the preprocessing steps in an existing paper [28], we
clean both GPS dataset and road network dataset, and perform map
matching to map the trajectories to the road network. We only use
trajectories with passengers inside. This gives us 1.8 GB GPS data.
According to the map matching result, we relocate all matched sam-
pling points on roads. As the sampling rate is low, we also insert
many sampling points in each trajectory to make it follow the roads.
The final data size is 12.1 GB.

4 VISUAL DESIGN

In this section, we first explain the idea of ranking. Then we present
design rationales and visual encodings in the ranking view.
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Given a set of taxi trajectories X = {x1,xp,...,x} passing a
selected route, we model each trajectory as a vector A =
{ai1,ay,...,a,}, where aj is the travel time on the ith road segment.
Although abstraction methods such as MDS [29] can potentially
summarize such high dimensional data as a few clusters, it is not

Ranking

intuitive to interpret the meaning of these clusters. We consider
to use ranking, which structures collections of items based on the
value of their attributes.

In TrajRank, we first rank trajectories on each road segment. As
can be seen later, directly visualizing the rankings of all individual
trajectories would cause heavy visual clutter. So we do some clus-
tering. For each road segment, we cluster travel time into groups
G and rank these groups. We use a hierarchical clustering algo-
rithm [12, Chapter 14.3.12]. Such an algorithm requires a distance
threshold D,,,, as the minimum average travel time gap between
groups. It can be understood as “significant travel time difference”.
The selection of D,,;, value will be discussed later.

Travel time on different road segments may be in different scales,
thus not comparable. Therefore within each road segment, we cal-
culate an outlier index c; for each group g; € G. The outlier index
is essentially a normalization of the travel time, defined as follows:
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where avg is a function to calculate average travel time,
Gnainstream 15 the group with the most trajectories, G, and Gy
are groups with the maximum and minimum average travel time.
Njever determines the number of outlier levels. In our system, we
choose Njgyer = 5.

Based on this definition, the outlier index for a group g; can be
explained as follows:

(0, Njever] » gi is a positive outlier
0, g; is the mainstream
[=Niever,0) , i is a negative outlier

C(gi) = (@)

where positive outlier indicates less travel time than mainstream,
and negative outlier indicates more time.

We further propose a score S to evaluate the overall ranking of
trajectory x;. It is defined as following:

S(x;) :Zwr*cr 3)

where r is the index of road segment, ¢, is the outlier index of
the travel time group of trajectory x; on road segment r. w, serves
as a weighting factor, equal to interquartile range(/QR) [26]. IQR
is a common measure of statistical dispersion. It is defined as
IQOR = Q3 — Q1, where Q1 is the 1st Quartile, and Q3 is the 3rd
Quartile. If the dataset has a low IQR, its distribution is concen-
trative, otherwise dispersed. We use /QR to measure the abnormal-
ity of outliers happening on a road segment. Outliers that happen
on road segments with concentrative travel time distribution seem



more accidental than those happening on road segment with dis-
persed distribution. By using IQR as the weighting factor, we em-
phasize on outliers caused by regular factors such as morning peak
instead of irregular factors such as a sudden traffic accident, so as
to bring out the ordinary travelling behaviour on a route.

With the score S, trajectories are clustered into trajectory groups.
Each trajectory group corresponds to one kind of travel behaviour.

4.2 Ranking Diagram

Ranking diagram visualizes trajectories’ rankings over road seg-
ments. For an easy comparison over different segments, we adopt
a line-based visual, inspired by parallel coordinates [15], parallel
sets [17] and LineUp [10]. Specifically, road segments are repre-
sented as axes, trajectories by polylines with vertices on axes. In
our design, we have the following considerations:

o C I: Keep continuity of trajectories: essential for correctly
tracing it over road segments.

e C II: Reduce visual clutter: should be scalable to hundreds
of trajectories.

e C III: Display ranking change over road segments: reveal
the relation between travel behaviour and road segments.

e C IV: Overview of travel behaviour: show mainstream and
outlier behaviour.

e C V: Support multilevel analysis: handle different analysis
granularities in spatial aspect.

e C VI: Keep small features visible: so as not to miss outliers.

Following these considerations, as shown in Figure 3, we pro-
pose ranking diagram. In this design, road segments are repre-
sented as vertical axes. From left to right, it follows the spatial
order along the route, i.e., the leftmost axis is the first road segment.
On each axis, travel time groups are represented by rectangles with
gray frame. The groups above have shorter average travel time.
Trajectories are drawn as continuous curves across corresponding
rectangles on axes(C I).
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Figure 3: Ranking Diagrams: different settings on threshold D,,;,, and
vertical gap.

As trajectories are clustered into groups by their overall ranking
score S, we merge trajectories in the same group into one band.
This reduces unnecessary jumping within a travel time group, thus
reducing visual clutter (C II). To emphasize ranking change (C III),
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Figure 4: Color Legend: the colors for trajectory groups are from
green to red, corresponding to highest score to lowest score.

bands are rendered in a braided manner. That is, bands dropping in
ranking are drawn behind the rising ones.

Different trajectory groups imply different kinds of travel be-
haviour. To give an overview of travel behaviour (C IV), trajectory
groups are sorted in descending average ranking score order and
a diverging color scheme (RdY1Gn) from ColorBrewer [11] is as-
signed. Figure 4 shows a color legend, where green color encodes
high average ranking score and red encodes low score. Addition-
ally, for each trajectory group, its average travel time (1) is labeled
on the upper right, and standard deviation (o) on the lower right,
both in the format of & : m's”. For ease of reading, an instruction
glyph is drawn on the rightmost position.

As discussed in Section 4.1, the threshold D,,;, in travel time
clustering implies different levels of clustering within a road seg-
ment. Thus by choosing different D,,;,, multilevel analysis can be
supported(C V). Figure 3 shows visualizations with different choice
of Dyyin. Diagrams on left show individual trajectories and diagrams
on right show trajectories merged into bands.

To keep the visibility of small travel time groups (C VI), we al-
low users to adjust the vertical gaps between rectangles. Broaden-
ing the gap makes the groups more visually distinguishable. In the
upper row of Figure 3, there’s no vertical gap. The groups are com-
pactly placed, so the change of vertical position of band indicates
the ranking change. However, it is hard to differentiate different
groups. In the lower row, there’s a vertical gap. Although bands
in this form become wiggly, groups are more distinguishable. It is
easier to notice small groups.

4.3 Occurrence Temporal Distribution View

Complementary to the ranking diagram, the occurrence temporal
distribution view visualizes the travel behaviour with respect to
trips’ occurrence time. We adopt a histogram based design similar
to Liu et al.’s work [19]. In this way, we can show the temporal dis-
tribution of different ranking groups. Although other methods such
as pixel table [28] and calendar view [27] can show more details,
they are restricted to show the trajectory number in only one group
or the total. In our design, we have the following considerations:

e C I: Deal with uneven temporal distribution: as few taxis
travel at night, a linear timeline would waste display space at
nighttime.

e C II: Discretize the time understandably: discretization is
necessary for statistics, and it should follow certain conven-
tion.

e C III: Support exploration of periodicity: to reveal of peri-
odic pattern of human activity.

Figure 5 shows temporal distribution views with different set-
tings. The vertical axis is occurrence time and horizontal axis is the
number of trajectories. Trajectories are drawn as rectangles. The
color coding is consistent with the ranking diagram.

To deal with the uneven distribution of trips over a day (C I),
time axis is distorted to reserve vertical space.

To support multi-level observation, statistics can be performed
per 15 minutes, per half an hour and per hour (C II). Figure 5(a) is
at a finer temporal granularity than Figure 5(b). Users can switch
the temporal granularity by the three buttons on the right-top.

To explore the periodicity of human activity, we distinguish
trajectories at weekdays and weekends (C III) by default (Fig-
ure 5(a)(b)). Users can also merge them (Figure 5(c)). Addition-



ally, the weekday and weekend labels also act as temporal filters to
show weekdays’ or weekends’ trajectories only.
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Figure 5: Occurrence Temporal Distribution View: (a) fine granu-
larity, separating weekday/weekend; (b) coarse granularity, separat-
ing weekday/weekend; (c) coarse granularity, weekday and weekend
data merged.

4.4 Modified Box-plot View

We use box-plots to give a statistics summary of travel time on each
road segment. They are added on top of the ranking diagram, as
shown in Figure 6(a). The height of box is by convention /QR,
which is also the weighting factor w. To utilize space better, we
make some modifications on the classical box-plot. First, we jitter
the outliers to alleviate point overlap. Besides, we put all extreme
outliers below the dash line to save vertical space. To correlate it
with the ranking diagram, a distribution histogram can be covered
over the box-plot, whose color is consistent with the ranking dia-
gram, as Figure 6(b) shows.

Additionally, as Figure 1E shows, we also encode the same in-
formation on the map. The median travel time corresponds to the
width of inner blue band, and /QR corresponds to the width of outer
gray band. We think median and IQR are incomparable, so we en-
code them independently.
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Figure 6: Modified Box-plot View: (a) box-plot only; (b) distribution
histogram covered.

5 INTERACTION

In this section, we present the interactions in our system, including
trajectory filtering, route segmentation, brushing and linking.

5.1 Trajectory Filtering

We support interactive trajectory filtering in the spatial view. Simi-
lar to TrajectoryLenses [18], users can dynamically extract trajecto-
ries by dragging circular shaped lenses. As Figure 7 shows, mouse
hovering on different regions of the lens evoke different functions.
For example, traffic flow direction can be defined by dragging a line
between two lenses.

Temporally, trajectories can be filtered by days, as shown on the
top of Figure 1A. Each square represents a day. The ones with black
frames are weekends.
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Figure 7: Trajectory Filtering Interactions. CPS is short for Carry

Passenger Status.

5.2 Route Segmentation

When trajectories are filtered, the most frequently passed route are
selected by default, and split into ten road segments. Route seg-
mentation can be fine tuned by users, as Figure 8 shows. For exam-
ple, dragging the cursor upwards decreases segmentation granular-
ity and downwards increases it. Two road segments can be merged
by deleting the node between them. On the contrary, one road seg-
ment can be split by adding a new node. Moreover, the route’s
endpoints and the nodes can also be adjusted by dragging.
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Figure 8: Route Segmentation Interactions.

5.3 Brushing and Linking

TrajRank composed of multiple linked views. Users can make se-
lections in different views. For example, in the ranking view, users
can select trajectories by clicking on a trajectory band or a cell
in color legend. In occurrence temporal distribution view, users
can set a time range by dragging on the rectangles, or pressing the
weekends and weekday buttons. These selections will be updated
in other views. Besides, in the spatial view, users can play an an-
imation to recover the movement of selected taxi trajectories, with
start time aligned together. This helps them verify their findings.

6 EXPERIMENT RESULTS

In order to test the effectiveness of our method, we have imple-
mented a prototype system. The system is written in C++, with Qt
framework. The rendering is performed with both OpenGL and Qt
Graphics View. We run the system on an Intel(R) Core(TM)2 2.66
GHz Laptop with 4 GB RAM and a NVIDIA Geforce GTX 470
GPU. Based on this implementation, we have performed quite a lot
of exploratory studies on the Beijing taxi dataset. In the following
part of this section, we report three use cases.

6.1 Case 1: Overview of Travel Behaviour over Space
and Time

Our system provides an overview of taxi driving behaviour on each
route. As shown in Figure 9(a), we have selected 6 typical routes
in Beijing and visualized the spatial variation of their travel time
with bands in map view. Route A starts from north 4th ring and
ends at the west 2nd ring. The travel time variance is significantly
larger on the west 2nd ring. Route B and E start from highways
and end at the 3rd and 4th ring respectively. Similar to route A,
travel time variance increases once taxis get on the main ring road,
meaning that there is less change of the travel time when traveling



on highway than traveling on urban road. Besides, it usually takes
longer at the turning corners than other road segments. Route C
and F are in downtown. Their travel time are quite even distributed
along the routes. Some small variance of travel time may be shaped
by the neighbouring commercial regions. Starting from Beijing In-
ternational Airport, route D follows the Airport highway. The 5th
segment stands out with much larger variance in travel time. Per-
haps this is due to a toll station there.

The temporal distribution of travel time is shown in Figure 9(b).
For route B and E, trajectories with low scores (red color) appear
mainly in the morning. In contrast, for route A, C and F, trajec-
tories with low scores appear mainly in the afternoon. Especially
for route F, on weekdays taxi travels with low ranking behaviour
around 18:00. Meanwhile, the taxi flow volume decreases on route
F. Route D has very few taxis with low ranking scores, and these
taxis appear all over a day. Perhaps this can be explained by their
regular stoppage at the toll station.
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Figure 9: Travel Behaviour over Space and Time: (a) 6 typical routes
in Beijing are selected and their corresponding bands are shown in
the spatial view; (b) the temporal distribution views of these 6 routes.

6.2 Case 2: Understanding Travel Behaviour with Even
Route Segmentation

With TrajRank, we enable users to explore the details of travel time
ranking over road segments. In Figure 10(a), a westward route
on the north 4th ring is selected, and 857 trajectories following the
route are extracted. The horizon graph (Figure 10(b)) shows there is
no obvious peak in the taxi flow volume. With D,,;,, = 30 s, trajecto-
ries are clustered into 8 groups. As the color legend in Figure 10(c)
shows, the group’s ranking decreases from green to red and the av-
erage travel time increases from around 7 minutes to 18 minutes. In
the temporal distribution view, clusters with low rankings are in the
morning of weekdays, and in the late afternoon of both weekdays
and weekends.

To study different clusters in detail, we highlight each group
respectively in Figure 10(d). The Ist cluster has high ranks over
all road segments. The 2nd cluster ranks low at the 4th road seg-
ment. The 3rd cluster contains few trajectories and unclear ranking
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Figure 10: TrajRank with Even Segmentation: (a) a westward route
is selected on the 4th ring; (b) the horizon graph shows the temporal
distribution of trajectories on that route; (c) ranking diagram shows
the trajectory ranking; (d) 8 clusters with different travel behaviors
are highlighted respectively.

change. The 4th cluster has low ranks at the 3rd and 4th road seg-
ments. In contrast, the Sth yellow cluster has low rank at the 3th
road segment. Trajectories in the 6th, 7th and 8th clusters appar-
ently have low ranks at several road segments. For the last few
groups with low rankings, we find that low rankings at different
road segments appear together, which may indicate that delay on
these road segments are strongly correlated. In the temporal dis-
tribution view, we also find that red and yellow trajectory groups
appear together.

6.3 Case 3: Understanding Travel Behaviour with Un-
even Route Segmentation

By adjusting the route segmentation, user can narrow down travel
behaviour analysis to smaller road segments. In Figure 11, we se-
lect a route on the 4th ring. It starts at the southwest direction and
ends at the northeast direction. We set the time range as one week,
and extract 201 taxi trajectories. As Figure 11(a) shows, we first
divide the route into 3 road segments with equal length. In the rank-
ing diagram, the overall ranking score is correlated to the ranking
on the 3rd road segment. In the box-plot view, we find it probably
takes 2 minutes to travel on the 1st and 2nd road segment while the
travel time on the 3rd looks significantly longer. The variance on
the 3rd road is also larger. Further, we add a new node to split the
3rd segment into two halves. The left half has a large variance while
the right half doesn’t. The trajectory clustering is updated, which
is again consistent with their rankings at the new 3rd road segment.
In the next step, the 3rd road segment is split further. The result
is in Figure 11(c). Rankings on the 3rd and 4th road segments are
consistent to the overall ranking score. For example, the red clus-
ter ranks lowest on the 3rd and 4th road segments. In the temporal
distribution view, the red cluster is mainly in the morning on week-
days. In Figure 11(d), trajectories in the morning are highlighted
to compare travel behaviour in the morning of weekdays and week-
ends. The green and light green trajectories at weekends rank at
the top, while the red to yellow trajectories on weekdays rank at the
bottom. We show the average time of the red and yellow clusters in
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Figure 11: TrajRank of Uneven Segmentation: (a) the route is segmented into 3 road segment with equal length; (b) one road segment is split,
now there are 4 segments; (c) one road segment is further split, now there are 5 segments; (d) trajectories in the morning are highlighted.

the weekdays in Figure 11(d). We find although the length of the
3rd and 4th segments are nearly the same, these trajectories have
longer travel time on the 3rd segment than the 4th.

7 USER STUDY

We have performed an informal user study to evaluate the system.
We recruited 7 students and all of them have some experience in
visualization. We first explained to them the basic concepts of our
work and demonstrated the system functionalities. Then we asked
them to complete three exploration tasks with our system. Finally,
we collected their feedbacks with a questionnaire and a free discus-
sion about the advantages and disadvantages of our system.

Our tasks are designed to guide users to explore the taxi travel
behaviors. In the first task, we asked users to analyze the ranking
diagram with even segmentation, shown in Figure 1. This task is
similar to Case 2. In the second task, we ask users to analyze the
ranking diagram with uneven segmentation, shown in Figure 11.
So it’s basically a reproduction of Case 3. In the third task, we
ask users to perform filtering and segmentation themselves, then
construct their own ranking diagram and explore it. For all tasks, we
ask users to focus on the three aspects of travel behavior exploration
mentioned in Section 1.

Our questionnaire contains 17 questions in three categories: vi-
sual design, interaction and overall system function. The visual de-
sign questions are closely related to the design considerations men-
tioned in Section 4.2 and Section 4.3. The answers are based on
a five-level Likert Scale, where 1 means “Strongly Disagree”, and
5 means “Strongly Agree”. All users finish their questionnaires.
The results are summarised in Table 1, which is very encouraging.
For most questions, the average rating is above 4. That means our
system has fulfilled its design requirements and supports the major
tasks. The only question with rating less than 4 is Q10, about com-
paring travel time on different road segments. We have interviewed
the users rating 2 and 3 for this question. One of them was not so
familiar with boxplot and has misinterpreted it. Another one says
that the boxplots are so small, it’s hard to measure their vertical
differences, esp. when comparing non-adjacent boxplots.

During the free discussion, most users consider the functional-
ity and interaction most satisfactory. One of them mentioned: “It’s
clear to get the relationship between road segments and travel be-
haviour.” Another one said: “Color band is beautiful and provides
good overview.” For what they don’t like, many users complained
about the colors of trajectory group. When there are many groups,
their colors are too similar and hard to differentiate. They also felt
pity that there are no deeper analysis of the travel behavior.

8 DISCUSSION

While the idea of ranking has been frequently used in visualization,
for the first time it is applied to trajectories. This is the major differ-
ence with previous works on similar topics. Such a ranking based

Table 1: Summary of the evaluation questions and results.
Category Questions Rating
Ql: For a trajectory or travel group, easy to|4.3
trace its rankings over different road segment
(CI,CII)

Q2: There’s no heavy visual clutter prevent- [4.6
ing ranking change analysis (C II)
Q3: Easy to gain an overview of different tra- | 4.6
jectory groups (C IV)
Q4: Multi-level analysis supports to provide |4
both high level summary and local level de-
tails (C V)

Q5: Easy to notice small group (C VI) 4.1
Q6: Distortion on time axis has no effect on|4.6
Temporal reading time (C I)
Distribution Q7: Easy to understand the time discretiza- | 4.4
View tion (C TI)
Q8: Easy to explore the difference of week-|4.7
days and weekends (C III)
Modified Q9: Easy to compare the travel time variance [ 4.7
Box-plot View | of road segments
Band Encoding [QT0: Easy to compare the average travel time | 3.3
on Map of road segments
Q11: Natural to evoke different functions 4.4
Q12: Satisfied with feedback while filtering |4.4
Q13: Easy to manipulate the filters 4.2
Q14: Easy to do different segmentation 4.6
Q15: Intuitive to gain an overview of the|4.3
travel behavior of a route
Q16: Strong support to explore the relation- | 4.6
ship between travel behavior and road seg-
ment

Q17: Strong support to explore the relation- | 4.4
ship between travel behavior and travel occur-
rence time

Ranking
Diagram

Visual
Design

Occurrence

. Filterin,
Interactions &

Segmentation

System

method allows users to compare the behaviour of taxis based on
their relative position, instead of the absolute time. Besides, our vi-
sual design allows users to study the micro-behaviour of individual
taxis, and compare them at a very fine spatial granularity. This is
again different from existing works focusing on a whole route [19]
or requiring to aggregate all trajectories [28].

Our method can be potentially extended to study other move-
ment data, especially in the field of transportation and sport. For
example, analysing the travel time ranking of buses on a specific
route can help administrators study the delays, i.e. when and where
buses fail to arrive on time. Analysing the ranking of race cars dur-
ing a competition can be more interesting, because the goal of race
car drivers is to reach the destination as soon as possible. The inter-
actions between different race car drivers, and the tactics involved
can all be studied.

In this work we are working with taxi GPS dataset. We envision
our users to be drivers and transportation analysts. However, our
current focus is to develop a visual analysis method rather than an
application. Therefore our exploration tasks are summarized from



existing works in travel time analysis, and the participants in our
user study are common students. Currently we are not working
with domain experts. In the future, when we intend to address a
specific domain question, it would be critical to redefine the tasks
based on domain requirements. In that case, we would also need to
invite domain experts for evaluation.

Our method has some limitations. According to our definition of
the ranking score, we emphasize the regular outliers such as morn-
ing peak, and relatively ignore the irregular outliers such as a sud-
den accident. Moreover, the overall score does not have a clear se-
mantic meaning. We find it very related to the average travel time,
so we use a red to green color scale for the trajectory groups. The
red color corresponds to low score, which is approximately low
speed, or bad traffic condition. However, the score is not rigidly
correlated to travel time, and the travel time range of different tra-
jectory groups can overlap. Besides, as discovered in the user study,
the ranking diagram can not handle too many groups. Otherwise the
group colors will be hard to distinguish.

9 CONCLUSION AND FUTURE WORK

In this work, we introduce a visual analysis method TrajRank to
explore taxi travel behaviour on a route. The central idea of our
design is ranking. For a set of taxis on the same route, we compare
their travel behaviour by the relative travel time ranking on each
road segment. We further calculate a ranking score to group these
trajectories. We have a carefully designed visual interface to reveal
the spatial-temporal distribution of travel time. With rich filtering
and segmentation interactions, TrajRank enables users to flexibly
explore taxi travel behaviour on a route. Finally, we demonstrate
the effectiveness and usability of our method with three use cases
and a user study.

In the future, we would like to extend single route analysis to
multiple routes analysis. We will consider complex route struc-
tures, e.g., parallel, merging or splitting. We especially want to
compare the travel behaviour on alternative routes. Besides, we
want to improve the road segmentation method. Currently the route
is segmented in equal-distance manner by default. In future, we
would consider segmentation according to underlying traffic con-
text, e.g., traffic intersections. Finally, we would like to test our
ranking method on other movement data, such as F1 race-car data.
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