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Abstract Visualization have evolved into a flourishing research field in recent 30 years. There are substan-
tial visualization methodologies and applications published every year. Most of literature surveys focus on
reviewing the state-of-art techniques in a certain direction in-depth. In this work, we conduct a cross-section
survey by taking all the latest literatures as a whole, to obtain insights into the ecology of Information
Visualization and Visual Analytics field in 2016. Center around 70 related publications in the IEEE VIS,
we perform a mixed quantitative and qualitative analysis to report the current research progress, including
statistical overview as well as detailed research topics.
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1 Introduction

Visualization is the discipline that transforms data into images and leverages human visual capability into
the analysis, which helps to see the unseen. In 1987, the NSF (U.S. National Science Foundation) held a panel
to discuss the potential of visualization as a new technology in scientific data analysis [McCormick, 1988].
Later, the visualization field has evolved into three branches, i.e., Scientific Visualization, Information Visu-
alization and Visual Analytics. Scientific Visualization typically deals with three-dimensional phenomena,
such as medical, biological data, etc. Information Visualization [Chen, 2005] concerns nonnumeric, nonspa-
tial, and high-dimensional data, e.g., textural data, network, etc. Visual Analytics [Thomas, 2005] is the
science which supports users to perform analytical reasoning via interactive visual interfaces.

In the last 30 years, numerous visualization methods and applications have been published in the
field of visualization. In such a flourishing research field, many surveys summarize the variety of the
visualization methods. Early in 1998, Geisler [Geisler, 1998] discusses information visualization appli-
cations and techniques according to data type, such as spatial, temporal, hierarchical, etc. Zudalova
et al. [Zudilova-Seinstra et al., 2008] discuss a wide range of topics in interactive visualization, includ-
ing data representation, novel user interface, etc. Liu et al. [Liu et al., 2014] perform a survey of the
major research trends in the four categories of information visualization, namely empirical methodolo-
gies, user interactions, visualization frameworks, and applications. Other surveys focus on specific di-
rections of visualization, such as graph visualization [Von Landesberger et al., 2011], visualization con-
struction tools [Grammel et al., 2013], software visualization [Caserta and Zendra, 2011], network security
events [Shiravi et al., 2012], etc.

As opposed to surveys of the state-of-art approaches in a certain direction in-depth, in this work, we
aim to give a cross-section survey by taking all the latest literatures published in one year in the field
of Information Visualization and Visual Analytics, in order to take the freshest snapshot of the academic
ecology. We are more concerned with the research landscape of the whole Information Visualization and
Visual Analytics field in 2016, such as what challenges have been covered recently, how the research works
are distributed, e.g., over different data types, etc., what new research trends there are, etc.
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70 highly related publications are collected from the top visualization conference venues, IEEE VIS
InfoVis (Information Visualization) and VAST (Visual Analytics Science and Technology) 2016. A set
of descriptors are extracted from an array of well-known visualization frameworks [Shneiderman, 1996],
challenges [Chen, 2005,Keim et al., 2008] to depict a research publication from multiple aspects. Then a
peer review among all authors is performed to code literatures with the descriptors. With the structural
literature collection, a mixed quantitative and qualitative analysis is conducted to gain insights into the
current research progress, including:

– Provide a statistical overview of the research progress
– Summary the research topics of interest
– Identify the newly emerging research directions and discuss the future trends

In the rest of paper, we introduce the top challenges identified in the field in Section 2. Then we explain
how the literature in 2016 is analyzed in Section 3. In Section 4, we give the statistical overview of the
research in 2016. The research topics are introduced in detail in Section 5. In Section 6 we discuss the
observations in research trends. Lastly, we conclude the report in Section 7.

2 Top Research Problems in Visualization

In the past years, researchers identified the top unsolved problems in Information Visualization and Visual
Analytics. It is these challenges that drive the field of information visualization to continue evolving.
Aligning the research progress with the proposed challenges provides a good awareness of current status of
the field, namely what has been achieved and what has not. Conversely, research progress not aligned with
proposed challenges indicates the new research interest.

In 2005, Chen [Chen, 2005] outlined the top 10 unsolved problems in information visualization, including
those caused by technical barrier, those from the user-centric perspective, and those at the disciplinary level.
Keim et al. [Keim et al., 2008] presented the top 10 most significant challenges in visual analytics from the
perspectives of application and technology respectively. In 2014, Liu [Liu et al., 2014] also addressed five
major technical challenges which hinder perfect information visualization.

We consolidated unsolved problems through a combination of similar ones. The resulting set contains
15 unsolved problems. (1) Usability asks for low-cost, ready-to-use information visualization systems and
techniques. (2) Assessment of information visualization systems is essential for the science of visualization,
including the understanding of elementary perceptual-cognitive tasks, measurement of visual quality, etc.
(3) Prior Knowledge requires to adapt information visualization systems to the accumulated knowledge of
their users. (4) Education and Training refers to the need to spread and communicate the knowledge of
visualization inside as well as outside the field. (5) Scalability is one of the long-lasting challenges which
requires continual performance as the scale increases. (6) Aesthetic issues ask for insightful and visually
appealing information visualizations. (7) Dynamics needs to deal with the changes over time. (8) Causality,
Visual Inference and Predictions require to understand the technology and comprehend the logic, reasoning
and common sense. (9) Semantics requires to recognize complex coherences with human beings. (10) Data
Quality and Uncertainty poses the challenge of analyzing data with quality problems or uncertainty. (11)
Data Provenance asks for the understanding where data come from. (12) Data Stream requires to deal with
the streaming data. (13) Integration requires integration with automatic analysis, database, statistics, etc.
(14) Knowledge Domain Visualization is a synthesized challenge which requires conveying of information
structures with knowledge. (15) Synthesis of Problems requires the solution to a series of heterogeneous
problems.

3 Literature Analysis

To have an overview of the latest research progress of Information Visualization and Visual Analytics in
2016, we systematically reviewed 70 related literatures in IEEE VIS. Specifically, we covered all journal-
track papers in IEEE VAST and InfoVis, as well as related papers in EuroVis, PacificVis partially. We also
included some related papers in the array of workshops, panels, etc.
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3.1 Analysis Workflow

Figure 1 illustrates the workflow of literature analysis. Firstly, a unified set of descriptors is proposed to
depict the major features and challenges of a work. Referred to a collection of classical literatures about
frameworks of visualization and visual analytics, the set includes five types of descriptors, which will be
introduced in detail in Section 3.2. Secondly, all authors manually code the literature with descriptors
in two rounds. In the first round, each literature is assigned to two authors and coded. In the second
round, authors resolve the literature with conflict descriptors. Finally, a mixed quantitative and qualitative
approach is performed based on the descriptors. Quantitatively, the insight is obtained from the statistics
of descriptors (Section 4). Qualitatively, all authors derive the research topics of interest based on their
opinions and experiences (Section 5).
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Fig. 1 Workflow of Literature Analysis: a unified set of descriptors is derived for information visualization and visual
analytics; literature is multi-pass coded with descriptors by authors; insights are obtained from a mixed quantitative and
qualitative analysis.

3.2 Literature Descriptors

Each paper is depicted with five descriptors covering from the basic information to detailed features.
Specifically, they are defined as following.

– Basic Information includes the title, the major affiliation, venue where the paper is published, i.e.,
VAST, InfoVis, PacificVis, EuroVis

– Data Domain depicts what type of data the paper works on. Based on the category by Shneider-
man [Shneiderman, 1996], we refine the data domain by following types, i.e., Textual, Spatial, Temporal,
Multi-dimensional, Hierarchical, Network, Hybrid, and General, where if one method can be applied to
the general data type, which means it has no specific requirement on the data type.

– Visual Design Philosophy describes what the visual interface is like. There are five types. Stand-
alone design emphasizes one major diagram and others serve as auxiliaries. Multi-view design refers to
the interface with multiple coordinate visual components. Mixed-in is to design one hybrid visualiza-
tion based on two or more existing visualizations. Add-on design is to add visual enhancement while
preserving the design of original one. Physical design takes the objects in reality as the medium of
visualization.

– Exploring Philosophy depicts how the exploration works in the visual analytic system. There are
seven types. Overview-detail as the most well-known exploration mantra [Shneiderman, 1996], is used
to explore globally first and then perform detail analysis on demand. Brush-link provides the connecting
exploration among multiple views. Exploration-recommendation takes the exploration (e.g., labelling)
of users as input and responses users with feedback accordingly. Query implies those systems based on
information retrieval. Progressive exploration updates the result iteratively. Interaction enhanced explo-
ration improves exploring experience by interaction recording and recovering. Immersive exploration
emphasizes on embedding users in the visualization environment.

– Challenge depicts what problem the work claims to tackle. The list of challenges is introduced in
Section 2.
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4 Statistics

Table 1 Publication Distribution over Challenges

Challenge Literature

Usability

Data-oriented [Bach et al., 2017][Cordeil et al., 2017][Kwon et al., 2017][Liu et al., 2017c]
[Schulz et al., 2017][Yang et al., 2017a][Van et al., 2017][van der Zwan et al., 2016][Veras and Collins, 2017]

General Visualization Authoring [Amini et al., 2017][Bigelow et al., 2017][Bryan et al., 2017]
[Kim et al., 2017b] [Satyanarayan et al., 2017][Yu and Silva, 2017]

Others [Loorak et al., 2017][Saket et al., 2017][Sarvghad et al., 2017]

Assessment

Intrinsic Visual Measures [Beecham et al., 2017][Behrisch et al., 2017][Gramazio et al., 2017]
[Meulemans et al., 2017][Netzel et al., 2017][Padilla et al., 2017][Wu et al., 2017]
[Zhang and Maciejewski, 2017]

Human Factor Measures
[Cordeil et al., 2017][Crouser et al., 2017][Dasgupta et al., 2017]
[Dimara et al., 2017][Tam et al., 2017]

Scalability

Visual Scalability [Alsallakh and Ren, 2017][Veras and Collins, 2017]

Interactive Scalability [Kim et al., 2017a][Turkay et al., 2017]

Data Efficiency [Pahins et al., 2017][Xie et al., 2017][Wang et al., 2017]

Causality,
Visual Inference
and Predictions

Urban Related [Al-Dohuki et al., 2017][Liu et al., 2017a][Yang et al., 2017b]

Text Related
[Felix et al., 2017][Kim et al., 2017a][Berger et al., 2017]
[Shen et al., 2017]

Social Media Related [Chen et al., 2016][Hu et al., 2017][Wang et al., 2016]

Others [Fu et al., 2017][Li et al., 2017][Liu et al., 2017c][Xu et al., 2017]

Education
and Training

Theory [Ceneda et al., 2017][Crouser et al., 2017][Dabek and Caban, 2017][Goodwin et al., 2017]

Landscape Construction [Isenberg et al., 2017][Sacha et al., 2017]

Education for the Public [He and Adar, 2017][Willett et al., 2017]

Integration Machine Learning [Liu et al., 2017b][Rauber et al., 2017][Ren et al., 2017]

As the top visualization venue, IEEE VIS 2016 accepts 70 full journal-track papers on Information
Visualization and Visual Analytics, 37 from InfoVis and 33 from VAST.

We count the publication distribution over different data types. General data ranks first, 21 publications
in total. 16 of them are InfoVis papers about general visualization methodology, evaluation or theory model.
Without the limitation to a certain type of data, this kind of general works are consolidating the foundation
of the visualization field. On the other hand, visual analytics keeps being applied in various application
domains. 11 out of 33 VAST papers model the data in the visual application as multi-dimensional data.
Spatial, temporal and network also stimulate some research publications. Fusing heterogeneous data sets
from multiple sources is a trend in the recent years. In 2016, 6 systems handle the hybrid data sets.

Figure 2 shows publication distributions over different design and exploration philosophies respectively.
42 out of 70 publications propose certain visualization or visual analytic methodologies. The other 28
publications concern more either about evaluation, theory or performance improvement. As Figure 2 shows,
the majority of visual designs adopt the typical multiple or stand-alone view and provide exploration
in overview-detail and brush-link manner. With the marriage of visualization and mechine learning, the
exploration and then recommendation is one of the hot exploration philosophies, which make the best of
interactions (such as tagging, annotation, etc.) and automated algorithms (such as cluster, classification,
etc.). There are 6 related works published in 2016. On the other hand, as the increase of data scale and
task complexity, some papers turns visual exploration into the progressive one, to support users to explore
the data and complete tasks iteratively. As found in Figure 2, there are some works concerning about
new design philosophies in 2016, such as add-on, physical design, and exploration philosophies, such as
interaction enhancement and immersive exploration. More detailed discussion will be included in Section 6.

Table 1 gives an overview of the publication distribution over different challenges. There are several
main challenges where the research efforts go to in 2016. Usability issue is the top challenge tackled in
2016, with the largest number of publications. The majority of works improve the usability of visualization
from two aspects, namely the efficient visualizations of specific data types such as graph (Section 5.1),
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Visplause [Arbesser et al., 2017]

PhenoStacks [Glueck et al., 2017]

Mooc Vis [Fu et al., 2017]

Game Vis [Li et al., 2017]

WeightLifter [Pajer et al., 2017]

VisMatchmaker [Law et al., 2017]

NameClarifier [Shen et al., 2017]

TextTile [Felix et al., 2017]

SmartAdP [Liu et al., 2017a]

Screenit [Dinkla et al., 2017]
AnaFe [Gutenko et al., 2017]

Eye Track [Kurzhals et al., 2017]

SemanticTraj [Al-Dohuki et al., 2017]

Categorical Joint [Xie et al., 2017]

Squares [Ren et al., 2017]

ViDX [Xu et al., 2017]

PowerSet [Alsallakh and Ren, 2017]

CNN Visualization [Liu et al., 2017b]

Ann Vis [Rauber et al., 2017]

Data Driven [Kim et al., 2017b]

AxiSketch [Kwon et al., 2017]

Vis by Demonstration [Saket et al., 2017]

Brain NodeTrix [Yang et al., 2017a]

VisFlow [Yu and Silva, 2017]

TopicLens [Kim et al., 2017a]

Temporal Trend [Van et al., 2017] 

DataClips [Amini et al., 2017]

Nested PC [Wang et al., 2017a]

MapTrix [Yang et al., 2017b]

cite2vec [Berger et al., 2017]

Temporal Summary [Bryan et al., 2017]

booc.io [Schwab et al., 2017]

SentenTree [Hu et al., 2017]

D3&AI [Bigelow et al., 2017]
Coverage [Sarvghad et al., 2017]

HindSight [Feng et al., 2017]

Embed [Loorak et al., 2017]

Physicial Bar [Taher et al., 2017]
Collaborative [Cordeil et al., 2017]

Embedded Data [Willett et al., 2017]

AnnotationGraphs [Zhao et al., 2017]

Pattern & Sequence [Liu et al., 2017c]

14 15 7 2 4 17 19 6 5 3 42

Fig. 2 The Distribution of 42 Publications over Different Design and Exploration Philosophies: the philosophies of multiple
and stand-alone view dominate in visual design, accompanied with overview-design and brush-link exploration philosophies.
There are some new philosophies emerging in 2016 (such as physical, add-on, etc.) which will be introduced in detail in
Section 6.
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high-dimensional data (Section 5.2) as well as visual authoring tools to provide ready-to-use visualization
service for general data (Section 5.3). Assessing the quality of visualization and visual analytics is another
challenge (Section 5.4), including Intrinsic Visual Measures and Human Factor Measures. As the data
scales up, Scalability is a notable challenge, which attracts more or less research every year. The latest
progress on Scalability is introduced in Section 5.5. New visual analytic systems are developed to support
the Causality, Visual Inference and Predictions analysis in various application domains (Section 5.6). For
better Education and Train, visualization theory is continuously developed to consolidate the foundation
of the field (Section 5.7). Moreover, one new topic is the Integration of visualization with machine learning
(Section 5.8), to make the best of human and computer algorithm. For other challenges, such as Data
Quality and Uncertainty, and Data Stream, are included in some works but not dominant so that we will
cover them along with the detailed explanation of the major challenges.

5 Research Topics

In this section, we summary the research progress of break-through topics in Table 1 in 2016.

5.1 Graph Visual Analytics

(a) (b)

(c)

Fig. 3 Selected Graph Visual Analytics Work: (a) confluent edge drawings, towards unambiguous edge
bundling [Bach et al., 2017]; (b) a novel uncertain network visualization technique [Schulz et al., 2017]; (c) a study, com-
paring the effectiveness of immersive collaborative analysis in CAVE-style and head-mounted display [Cordeil et al., 2017].

As one of the most important data models in visualization field, graph is widely used in various problems
and applications. In 2016, graph papers can be categorized into three parts based on the problem they focus,
namely graph layout, graph evaluation and graph application.

There are several works about graph layout. As Figure 3 (a) shows, Bach et al. [Bach et al., 2017]
propose a novel technique, confluent edge drawings, for bundling edges in node-link diagrams based on
network connectivity. Their method calculates graph layout with less ambiguous bundling edges, which is
usually caused by traditional bundling techniques as they only focus on spatial proximity when bundling.
CUBu [van der Zwan et al., 2016] presents a GPU-based framework that addresses several challenges, in-
cluding speed, clutter, level-of-detail and parameter control, in visualizing large graph with edge bundling.
Different from the certain graph data, Schulz et al. [Schulz et al., 2017] present a novel uncertain network
visualization technique to visualize the distribution of possible realizations of a probabilistic graph (Fig-
ure 3 (b)). Vehlow et al. [Vehlow et al., 2016] deal with dynamic graph and design the matrix sequence to
analyze the dynamic topology and hierarchical group structures.

Several works focus on evaluating the performance of large graph visualization in specific condition.
With the same large graph, different sampling strategies would get very different resulting visualizations.
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Wu et al. [Wu et al., 2017] investigate how sampling strategies influence the node-link graphs. Kwon et
al. [Kwon et al., 2016] visualize large graph in an immersive environment and conduct a user study to
compare their method to traditional 2D graph visualization. The study concludes that users would have
better performance in an immersive graph visualization than traditional 2D one when facing difficult tasks
and large graph. Cordeil et al. [Cordeil et al., 2017] evaluate the effectiveness of collaborative visualization
in CAVE-style and head-mounted display (Figure 3 (c)). In the study, they find that participants using
head-mounted displays are faster than those in CAVE2 condition.

There are several applications using graph to model data and analyze patterns. Annotation Graphs
is a dynamic graph visualization of user-authored annotations [Zhao et al., 2017], which enalbes users to
externalize their thoughts. Shi et al. [Yang et al., 2017a] adapt the NodeTrix representation to compare
human brain networks.

As the network data becomes larger and more dynamic, graph visual techniques keep evolving. Tech-
niques for small static graph are not effective enough due to increasing limitation of traditional display space
and human cognition burden on dynamics. Analysing large dynamic graph keeps attracting attentions in
research fields.

5.2 High-dimensional Data Visual Analytics

High-dimensional/Multivariate data visualization has long been an important and popular research direc-
tion. Numerous works concerning various topics are published in 2016.

5.2.1 Interaction with Projection

Dimension-reduced projection is an essential technique in high-dimensional data analysis. Different from the
black box of dimension reduction (DR) in data mining, the visualization field enhances the interactions in the
projection to provide intuitive DR controls and promote understanding. InterAxis [Kim et al., 2016] allows
users to define a projection direction by assigning data items to its two ends. AxiSketcher [Kwon et al., 2017]
extends the idea to non-linear projections, enabling users to create a non-linear axis by drafting a curve
through the projected data. Zhou et al. [Zhou et al., 2016] extend the same idea in a different way. They
allow users to draw a line on the projection to pick up the corresponding compound direction. More
generally, Sacha et al. [Sacha et al., 2017] perform an in-depth survey in interactive DR, summarizing
related literatures from the past decade.

5.2.2 Visual Analysis of Parameter/Solution Space

Optimization problems are very common in data analysis and decision making scenarios. But the solution
space is usually too large to go through. Sampling in the space is a means to solve this issue. These
samples are assessed by the optimization rule and then visualized to give the overview and details. The
Grassmannian Atlas [Liu et al., 2016] is one such example, where the linear projection space is fully sampled
and visualized as an atlas. Scatterplot assessments like the Scagnostics [Wilkinson and Wills, 2008] are used
as rules to indicate projections with the most prominent features. As Figure 4(a) shows, the work by Xie et
al. [Xie et al., 2017] shows a slightly different scenario where all alternatives are equally good. Users have
to carefully inspect the solutions to make the final judgment. The WeightLifter [Pajer et al., 2017], on the
other hand, deals with a similar problem in weight tuning (Figure 4(b)). The equally good weights are
visualized as a tolerance area, allowing users to make decisions while being aware of parameter sensitivity.

Though the designs are different, the methodologies behind these works are very much alike. This is
also applicable to many other situations, such as the ordering space of parallel coordinates or matrixes, the
combination space of set-type data, etc. There has not been much research in this topic, but we can see a
growing interest in it.

There are also other notable trends in high-dimensional data visualization. Time-varying multivariate
data has gathered much interest in recent years. Researchers have tried various visual designs including
parallel coordinates [Gruendl et al., 2016], dimension reduction [Bach et al., 2016][Jäckle et al., 2016], and
even Self-Organizing Map [Bernard et al., 2016]. But there still lacks a good scheme to nicely integrate the
two kinds of analysis. Progressive high-dimensional visualization is also a rising topic [Pezzotti et al., 2016,
Turkay et al., 2017]. We’ll simply leave this part to the subsequent section about scalability.
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(a) (b)

Fig. 4 Two Notable Works in Visual Analysis of Parameter/Solution Space in 2016: (a) a visual inter-
face [Xie et al., 2017] supports users to iteratively narrow down the solution space in joint distribution reconstruction;
(b) WeightLifter [Pajer et al., 2017] helps with the exploration of high-dimensional weight space in multi-criteria decision
making.

5.3 Visualization Authoring

Recent years, there is a soaring boom of visualization authoring toolkits to facilitate visualization construc-
tion, from interactive online tool such as iVisDesigner [Ren et al., 2014] for non-programmers to powerful
program libraries like D3.js [Bostock et al., 2011] for programmers. In 2016, there are more works in this
direction - tools for constructing and editing visualization and tools for presenting visualization for story-
telling.

5.3.1 Authoring for Visualization Construction and Editing

How to quickly and efficiently build a visualization system is always a challenge. There are two types of
solutions, one for the programmer and the other for the general public. Vega-Lite [Satyanarayan et al., 2017]
is a representative work in providing the visualization library, as one step further from D3.js. With Vega-Lite,
Programmers can build up fully interactive visualizations. On the other hand, researchers provide What-
You-See-Is-What-You-Get (WYSIWYG) visualization authoring tools. VisFlow [Yu and Silva, 2017] is a
good example that users can flexibly construct different visualization views in the drag-and-drop manner.
Kim et al. [Kim et al., 2017b] provide a data-driven interface enabling users to interactively construct
inforgraphics. As Figure 5(a) shows, Bigelow et al. [Bigelow et al., 2017] provide an add-on to Adobe
Illustrator, which enables users to iteratively edit a visualization between D3 and Adobe Illustrator. Though
it is a prototype, it sheds light on exploring the crossover in construction between the code generation and
graphical editing.

(a) (b)

Fig. 5 Selected Visualization Authoring Work: (a) combination of Adoble Illustator with D3 [Bigelow et al., 2017]; (b)
DataClips [Amini et al., 2017] for Story Telling Authoring.

5.3.2 Authoring for Story Telling

Presenting and communicating information is one of the important goals of visualization. In 2016, Bryan et
al. [Bryan et al., 2017] proposed Temporal Summary Images to easily layout the annotations and tell the
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stories of analytical findings. Besides static visualization results, motion graphics are also suitable to tell
the stories with carefully designed animation. However, current methods to create motion graphics with
visualization require lots of effort. To reduce the workload in good motion graphics construction, Amini et
al. [Amini et al., 2017] summarize the existing visualization and motion graphics primitives and construct a
data clip library. With the library, they provide DataClips to help users quickly construct motion graphics
(Figure 5 (b)). Compared with the traditional motion graphics, it achieves good or even better quality but
takes less effort.

We can see that visualization authoring is a trend of visualization research to reuse, construct visual-
izations easily and tell good stories of data. Such newly developed methods can help the public users and
analysts make better use of visualization.

5.4 Assessment

There are a number of evaluation papers in 2016. One type focuses on the metrics or guideline to access
the intrinsic visual quality of various options in the design space. The other type takes human factor in
visual analytics into consideration and models them with models. The latter one is an increasing research
topic emerging in the direction of assessment, which not only evaluates the visual design but also involves
users as an essential part.

5.4.1 Intrinsic Visual Measures

In 2016, there is a particular interest in the visual quality assessment of geospatial visualization. Zhang et
al. [Zhang and Maciejewski, 2017] quantify how critical the elements in choropleth map are in enabling the
identification of spatial clusters. With the quantification, users are guided to pay special attention to the
highly critical elements. Again spatial visualization, Meulemans et al. [Meulemans et al., 2017] construct a
suite of metrics to quantify the optimization of various grid maps in the design space, including vertical align-
ment, false neighbors, etc. Similar to the gridded map, Padilla et al. [Padilla et al., 2017] study the impact
of 2D scalar field in different binning conditions on analytics tasks. Beecham et al. [Beecham et al., 2017]
perform crowdsourced experiments to study how graphical inference varies with spatial structure in geospa-
tial visualization. Netzel et al. [Netzel et al., 2017] perform a controlled eye-tracking study to compare the
performance of four different variants of map annotation in the visual searches. On the other hand, there
are two works on evaluating the visual interface of graph visualization. Wu et al. [Wu et al., 2017] study the
impact of five different sampling strategies on the eight visual factors in graph visual perception, including
cluster quality, high degree nodes, edge linking, etc. Magnostics [Behrisch et al., 2017] covers image-based
30 feature descriptors to quantify the interest of matrix diagrams. Choosing color is one of the essential
challenges in visualization. Gramazio et al. [Gramazio et al., 2017] propose Colorgorical which supports
users to customize the color palette with three color-scoring functions to balance between aesthetic and
discriminability.

5.4.2 Human Factor Measures

Other works are concerned with measurement of the human factors impacting the human-machine analysis
loop. Dasgupta et al. [Dasgupta et al., 2017] study the relationships between domain experts trust and
familiarity with the analysis medium. They evaluate the level-of-trust of 34 experts in a controlled user study
to distill trust-augmented design. Dimara et al. [Dimara et al., 2017] examine whether one of well-studied
human cognitive bias, i.e., attraction effect, appears in visualizations as the same presentation formats such
as text, numerical tables, etc. Tam et al. [Tam et al., 2017] propose a common theoretic basis to model
and compare visual analytics approach with machine-learning approach. Modeling human contributions
to an algorithm as queries to a Human Oracle, Crouser et al. [Crouser et al., 2017] propose theoretical
tool to reason the balance of human-machine collaboration. Besides the stand-alone analysis, Cordell et
al. [Cordeil et al., 2017] perform the first study to evaluate the effectiveness of immersive collaboration
between two displays, i.e., CAVE-style and Head-Mounted, in the context of network connectivity analysis.
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5.5 Scalability

Scalability of information visualization and visual analytics methods is always a critical issue. We review the
scaling methods in 2016 from three perspectives, namely visually scalable methods, interactively scalable
methods, and data-efficient methods.

5.5.1 Visual Scalability

Visualizations with good scalability works well when the scale of underlying data increases. For example, as
Figure 6(a) shows, PowerSet [Alsallakh and Ren, 2017] is a treemap-based visualization method to provide
a scalable visual representation for intersection data. They argue that existing works can not easily show
large amount of intersection. Each cell in the treemap represents one intersection among the set. From the
top to bottom, the number of set in the intersection increase. With this approach, they can provide a scal-
able overview for the intersections among set. Other than set relation, Veras et al. [Veras and Collins, 2017]
focus on the hierarchical data. They propose a scalable visualization method based on Minimum Descrip-
tion Length Principle, which can help users gain a balanced tree to increase the scalability. Figure 6(b)
demonstrates three scalable display-tailored visualizations.

(a) (b)

Fig. 6 Visual Scalability: (a) PowerSet [Alsallakh and Ren, 2017] presents each intersection as a cell in treemap; (b) three
visualizations for large scale of hierarchical data in three displays with different sizes [Veras and Collins, 2017].

5.5.2 Interactive Scalability

Dealing with large data sets, researchers meet the scalability issues by designing interactions to achieve
real-time changes. Turkay et al. [Turkay et al., 2017] design progressive visualizations for high-dimensional
data, which iteratively update results while users can conduct interactions during the process. This method
increases the usability of the visualization system. To design a scalable interaction, not only the real-time
feedback is important but also the focus should be on preserving the semantic context. As Figure 7(b)
shows, Kim et al. [Kim et al., 2017a] deploy the metaphor of lenses and design TopicLens which allows for
progressive topic modeling on the fly. In their lens interaction, the detailed projection of the highlighting
data are preserved in the context of overview, which maintains the scalability of such interactions. Scalable
interactions often require the real time feedback with context preserved.

5.5.3 Data Efficiency

An efficient data organization can provide a solid foundation for designing scalable visualization and visual
analytics systems. Pahins et al. propose Hashedcube [Pahins et al., 2017] with low memory requirements,
low query latencies, and simple implementation as a scalable visualization system. Their methods can
greatly reduce the query time and support the streaming data analysis. Besides the large amount, high
dimensionality of data increases the complexity and becomes a scalability issue. Sampling is a way to
improve the scalability. Wang et al. [Wang et al., 2017] propose Gaussian Cube, which pre-computes the
best multivariate Gaussian for the respective data subsets in the preprocessing stage. It greatly enhances
the efficiency of data exploration that it can handle one hundred million data points with 5-10 dimensions.
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5.6 VAST Application Fields

In 2016, visual analytics is continuously applied in various application fields, to help domain experts perform
causality analysis. We summarize the VAST application fields from the following perspectives, including
urban data visual analytics, textual data visual analytics, social media visual analytics and the new appli-
cation fields in VAST.

(a) (b)

(c) (d)

Fig. 7 Selected Visual Analytics Application Systems: (a) SmartADP, urban visual analytics to support billboard position
selection [Liu et al., 2017a]; (b) TopicLens, textual data visual analytics with an interactive lens [Kim et al., 2017a]; (c)
D-Map, a social media visual analytics system supporting ego-centric information diffusion [Chen et al., 2016]; (d) MOBA
game visual analytics system [Li et al., 2017].

5.6.1 Urban Data Visual Analytics

In 2016, there are continual research works dealing with urban related data. Deriving semantics from
spatial data, SemanticTraj [Al-Dohuki et al., 2017] leverages the processing methods from text mining and
management to deal with the traffic data. They transform the GPS logs into a text database and build up
a novel visual analytics system which supports text searching and semantic deriving functions. Cases from
the experts confirm the capability in exploration of traffic patterns. With a similar goal but aiming to derive
OD patterns, Yang et al. propose MapTrix [Yang et al., 2017b], a pair-wised OD matrix visualization to
show uncluttered OD flows. More than investigating the traffic patterns itself, Liu et al. [Liu et al., 2017a]
make use of the large scale of taxi data to help users make decisions on the billboard position selection.
They provide a dual-view visual analytics system, including a spatial temporal view and a decision making
view (Figure 7 (a)). By combining the multiple dimensions of the traffic data, they enable users to explore
the solution space and find suitable solutions.

5.6.2 Textual Data Visual Analytics

In text analysis, researchers mainly focus on deriving the semantics from large corpus in many applications,
such as news, social media content, research paper, etc. Felix et al. [Felix et al., 2017] summarize a data
model for both structured and unstructured data. They provide a visualization tool to support filtering,
splitting and summarizing in the data model. Besides the visual design, researchers also design novel in-
teractions to explore large scale of documents. Florian et al. [Heimerl et al., 2016] propose an interactive
lens called DocuCompass. They provide a Focus+Context method to explore the detailed keywords dis-
tribution with a lens. More than keywords, Kim et al. [Kim et al., 2017a] design a topic lens to support
semantic exploration of the topic distribution (Figure 7 (b)). Their method can keep the context of the sur-
rounding distribution of topics when zooming into the detail clusters. In this year, investigation of research
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papers gains more focus. As opposed to the original approach to describe the paper with its own keywords,
cite2vec [Berger et al., 2017] uses the keywords of how other papers cite it to represent the original paper.
When investigating the research paper, name ambiguity is a common problem where researchers might share
the same name. To conquer this problem, Shen et al. [Shen et al., 2017] propose a visual analytics system
to solve name ambiguity problem with the hints in three keys, i.e., co-authorship, publication venues, and
temporal information. With the specific designed hints and interactions, users can differentiate the authors
with the same name.

5.6.3 Social Media Data Visual Analytics

Different from the textual data, social media emphasizes the people relationship, geo tags and more fruitful
features. Social media is continuously a hot research focus in recent years. Hu et al. [Hu et al., 2017] propose
SentenTree to visualize the correlated keywords in the social events. Besides the keyword and textual data
research, researchers focus more on the information diffusion process this year. Chen et al. [Chen et al., 2016]
propose D-Map to visualize the ego-centric information diffusion process with a map-based visual metaphor
(Figure 7 (c)). They have found many interesting new social interaction patterns, such as dual-center
social network, strong center diffusion patterns, etc. Different from the ego-centric perspective, Wang et
al. [Wang et al., 2016] propose ideaFlow, to visualize how ideas (i.e. general information, topics, etc.) diffuse
across multiple groups in different time periods. They also support the overview to detail exploration,
showing the main themes of each idea. Besides information diffusion, Liu et al. [Liu et al., 2017a] also
investigate what are publics’ opinions towards different social brands based on social media data.

5.6.4 New VAST Application Field

In 2016, visual analytics has been applied in a wider range of new domain fields. Li et al. [Li et al., 2017]
design visual analytics system to help game designers find key events and game parameters resulting in
snowballing or comeback occurrences in MOBA game data (Figure 7 (d)). Fu et al. [Fu et al., 2017] present
a system which allows for effectively discovering and understanding temporal patterns in MOOC forums. By
collecting the data from users, the visual analytics systems help game develops and teachers better re-design
game or courses. Xu et al. [Xu et al., 2017] extend the Mareys graph by introducing a time-aware outlier-
preserving visual aggregation technique to support effective troubleshooting in manufacturing processes. It
allows for both real-time and historical analysis. Liu et al. [Liu et al., 2017c] perform visual mining in the
modern web clickstream data and propose the analytic pipeline consisting of three stages: pattern mining,
pattern pruning and coordinated exploration between patterns and sequences.

5.7 Education and Training

The challenge of education and training refers to build up the theoretic foundation and language of visualiza-
tion to facilitate the communication and sharing in the field. Early in 2004, the Theory of Visualization

has been proposed as one of the top research problems in the visualization field [Johnson, 2004]. Lots of re-
search effort has been put into building up the theoretic foundation of visualization and substantial amount
of research works have been published, covering a wide range of taxonomies, principles, concept models and
quantitative laws. It is estimated that hundreds of principles and guidelines are recommended by visualiza-
tion books [Ware, 2012][Ward et al., 2010]. Meanwhile, the top visualizaton venues organize series of focused
events on this topic in the past few years [Caroline et al., 2010][Min et al., 2016][Çaǧatay et al., 2011].

5.7.1 Theory

In 2016, there are considerable amount of publications on this topic. Different from classical discussion
on the principles of visual design [Sedlmair et al., 2013][Strobelt et al., 2016] and taxonomies about visual
analytics tasks [Jansen and Dragicevic, 2013][Munzner, 2009], some of them focus more on the theory of
human-machine collaboration. On one hand, some propose conceptual frameworks to model the human
factors in the loop of visual analytic. For example, Crouser et al. [Crouser et al., 2017] present the theoretical
tool, Human Oracle Model, to evaluate the workload balance between human and machine. It models human
contributions to an algorithm as queries to an Oracle with human-level intelligence. On the other hand, some
focus on the concept model of how machines better interact with human. Ceneda et al. [Ceneda et al., 2017]
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focus on the general model of guidances in the process of visual analytics, which is very essential for
effective data analysis. They model guidelines with three main aspects, i.e., knowledge gap about what
does the user need to know to make progress , input and output about what is the basis for generating the
guidance, and the guidance degree about how much guidance is provided. Inspired by automaton, Dabek
et al. [Dabek and Caban, 2017] propose a grammar-based approach to model and learn user interactions,
which helps with the detection of common exploration patterns and recommendation of the end-users with
useful data exploration in turn.

5.7.2 Landscape Construction

As the literatures accumulated, some researchers build up the landscape of visualization in finer granularity.
One topic of interest in 2016 is the emergence of bottom-top literature survey method. Different from the
top-bottom surveying approach which is based on the opinion and experiences of the authors, bottom-top
takes every single publication as input data and performs analysis to draw the conceptual map of domain.
One of the first steps in this direction is taken by Isenberg et al. [Isenberg et al., 2017]. They code each
publication with a list of keywords by multi-pass analysis of visualization papers published in the IEEE
Visualization conference series, and then derive major research topics and hot keywords in the whole field
of visualization. Their work serves as a starting point to facilitate the construction of common vocabulary
in the visualization field. Similarly, Sacha et al. [Sacha et al., 2017] perform a semi-automatic process on
all the literatures related to dimension reduction in the visual analytics of high-dimensional data to derive
the model of interactive dimension reduction.

5.7.3 Education for the Public

With the maturation of the visualization field, visualization has come into the public sight. Promoting the
education of the public has been recognized in recent years. There are some related works published in
2016. As Figure 8 (a) shows, He et al. [He and Adar, 2017] introduce a card-driven workshop developed
during their graduate infovis class, to demonstrate how InfoVis can be taught. Based on the collaborative-
learning principle, VIZITCARDS stimulates positive collaborations and helps learners to make high-quality
designs. Willed et al. [Willett et al., 2017] explore the conceptual framework which formalizes the notion
of embedded data representations. They connect the existing research on visualization to the physical world
via physically embedded data representations. Figure 8 (b) demonstrates the examples of the physical data
representations, such as visualizing the wind flow by augmented reality in urban landscapes.

(a) (b)

Fig. 8 Education for the Public: (a) VIZITCARDS [He and Adar, 2017] in Progress; (b) conceptual demonstration of
embedded data representations [Willett et al., 2017].

5.8 Machine Learning

Machine learning is well known for its great analytic power in various data mining tasks, such as clustering,
classification, prediction and so on. Machine learning is often the major means to promote analysis, while
visualization helps people comprehend the results and tune the underlying model. One example is the newly
published work by Dabek et al. [Dabek and Caban, 2017], where deterministic finite automaton (DFA) is
adopted to build an interaction model and predict users subsequent moves.

In recent years, many academic activities have been held trying to bridge the gap between the two fields.
One example is the MLVis in EuroVis 2016, a half-day tutorial that introduces machine learning methods
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(b)(a)

Fig. 9 Two Examples of Interplay between Machine Learning and Visualization: (a) Squares [Ren et al., 2017] visu-
ally evaluates a classifier; (b) convolutional neural network visualization helps to comprehend a machine learning pro-
cess [Liu et al., 2017b].

to visualization researchers. The same event is also planned for EuroVis 2017, implying a growing trend to
use machine learning to support interactive visual analysis.

More recently, this collaboration is proved reciprocal, as machine learning experts find them also gaining
insights from the visualization field. Ren et al. [Ren et al., 2017] design a parallel-coordinates-style interface
to help users evaluate the performance of a classifier (Figure 9 (a)). Liu et al. [Liu et al., 2017b] propose a
graph-based visualization to show the overall structure and the learned knowledge in a convolutional neural
network (Figure 9 (b)). Knowledge on each neuron is shown as featured image patches, allowing users to
perceive and diagnose intuitively. Besides the connections, we can also analyze a neural network regarding
the evolution of its activation vectors [Rauber et al., 2017].

Visual analysis of machine learning could be a promising new trend. It can deepen understanding of
existing approaches, and boost the development of new techniques. However, a direct visualization may not
be enough. It is important to introduce interactivity and seek for more in-depth topics. These are not easy
tasks and require close cooperation with domain experts.

6 Discussion

During the literature analysis, we also review the visual design and exploration philosophy for each work
to seek for potential future research of interest. In this section, we discuss our findings.

6.1 Design Philosophy

The majority of visual interfaces mainly consider either stand-alone view or linked multiple views. In 2016,
three new thoughts emerge in visual design, namely add-on mechanism, mixed-in design and physical design
space.

Add-on mechanism means to improve the visual capability by enhancing the existing approaches with
auxiliaries, while maintains the familiarity of existing approaches to the max. Add-on design philosohpy is
not totally new in 2016. Back to 2012, Kong and Agrawala [Kong and Agrawala, 2012] had proposed five
overlays to cover over charts to facilitate the chart reading tasks, such as reference lines, etc. However, more
related designs are published in 2016. One example is HEDA proposed by Loran et al. [Loorak et al., 2017].
HEDA extends the familiar multi-dimensional visualizations by embedding a tabular visualization. As
Figure 10 (a) illustrates, two more variables are added to the line chart to make the x-axis more ex-
plorable. HindSight [Feng et al., 2017] augments existing visualizations with visual indicators of user ex-
ploration history. Figure 10 (b) shows two examples of HindSight, which encode the interaction history
via opacity and color channel respectively. Similarly in the augmentation of interaction history, Sarvghad
et al. [Sarvghad et al., 2017] add a scent widget into the interaction widgets to visualize the dimension
coverage in the exploration space of high-dimensional data. As a new perspective for exploring the existing
approaches, add-on design philosophy has great promise for the future.

Mixed-in philosophy is to design hybrid visualization by combining two or more visualizations. One of
the earliest examples is the NodeTrix [Henry et al., 2007], a visualization combining the node-link diagram
to show the global structure and matrices to visualize the local communities. In 2016, there are several
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(a)( ) (b)

Fig. 10 Examples Adopting Add-on Machansim: (a) a line chart extended with HEDA [Loorak et al., 2017]; (b) Hind-
Sight [Feng et al., 2017] enhances visual systems with visual coding of exploring history.

mixed-in visualizations. For example, Yang et al. [Yang et al., 2017b] combine the matrix with the map view,
providing MapTrix, to enable users to investigate the Origin-Destination Flow (Figure 11 (a)). Figure 11
(b) shows SentenTree [Hu et al., 2017], which adopts the node-link diagram where nodes are replaced
with words and links indicate word co-occurrence within the same sentence. booc.io [Schwab et al., 2017]
visualizes the concept map combining hierarchical circular layout of concepts and linear path of learning
path (Figure 11 (c)). Moreover, the visualization authoring tool [Bigelow et al., 2017] integrates D3 into
the well-known graphical editor Adobe Illustrator to improve the generative capability. Instead of designing
from scratch, it would be an easy and efficient way to design with mixed-in design philosophy. However,
the mixed-in visualization set high bar in the efficient combination to make the best of each part.

(a)

(b)

(c)

Fig. 11 Examples Adopting Mixed-in Machansim: (a) MapTrix [Yang et al., 2017b] combines OD Flow with map view;
(b) SentenTree [Hu et al., 2017] displays a node-link diagram where nodes are words; (c) booc.io [Schwab et al., 2017]
visualizes the conceptual map with hierarchical concept map and linear learning path.

In 2016, there is an interesting observation that visualizations in the virtual space (i.e., computer) are
being externalized in the reality to enhance the visual communication, i.e., physical design. As Figure 12
(a) shows, Taher et al. [Taher et al., 2017] create the matrix with physical bars and allow users to create a
bunch of true interactions. Stoppel et al. [Stoppel and Bruckner, 2017] present a printable tangible wheel
chart, Vol2velle, which supports users to explore different parameter settings in volume rendering. More-
over, the general concept of embedding data representation in physical world is discussed by Willett et
al. [Loorak et al., 2017]. Figure 12 (c) illustrates the embedding example of different communities informa-
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tion visualization attached to the nametag of a group at a conference. In the near future, if the visualization
can be naturally embedded in the physical space and enhance the understanding of the surroundings, the
impact of visualization will be much larger for human lives. At the same time, it will induce a large design
space, including design of physical world, perception tasks, and occlusion problems, etc.

(a)

(b) (c)

Fig. 12 Examples Adopting Physical Design: (a) visualization and exploration with physical bar chart [Taher et al., 2017];
(b) Vol2velle [Stoppel and Bruckner, 2017] provides physical exploration in different configurations in volume rendering;
(c) an embedded data representation [Loorak et al., 2017].

6.2 Exploratory Philosophy

Interactive exploration is an important part in visualization design. In the recent decades, the overview to de-
tail method from Shneiderman is well known and widely applied to many visualizations [Shneiderman, 1996].
Besides it, we follow two young explorations in the latest works, i.e., exploration-recommendation mecha-
nism and progressive exploration.

(a) (b)

Fig. 13 Examples in Exploration-Recommendation Manner: (a) estimating the transformation in visualization by demon-
stration [Saket et al., 2017]; (b) interface of AxiSketcher [Kwon et al., 2017], which forms the axes of scatterplot based on
users’ sketching input.
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The first one is the exploration-recommendation mechanism, where the system reponds according to
users’ exploration. In 2016, researchers fulfill its meaning with many new ideas. One of typical exploration-
recommendation systems is to suggest options after modeling and computation, such as recommenda-
tion of annotating positions’ candidates in layout [Bryan et al., 2017], interaction suggestion by Dabek et
al. [Dabek and Caban, 2017]. There are two special exploration-recommendation systems recommending
according to users’ demonstration. As Figure 13 (a) shows, Saket et al. [Saket et al., 2017] propose a vi-
sualization system which estimates the desirable transformation by analyzing the users’ demonstration in
example. The other is the AxiSketcher [Kwon et al., 2017], as Figure 13 (b) shows. In AxiSketcher, users
sketch lines which reflects the desirable increasing pattern in the high-dimensional data. Then AxiSketcher
creates scatterplot axes which reflect their intended model. Exploration-recommendation mechanism em-
phasizes on the human-in-the-loop in visual analytics, which would support users to have true discourse
with the system.

The second one is the progressive exploration. Progressive computation improves the computation re-
sult iteratively, which continuously engage users in interpreting the responses from computer without any
interruption. As the scale of data and computation increases, progressive computation is getting increasing
interest. There are some related work in 2016. Turkay et al. [Turkay et al., 2017] propose three levels of
operations to control the pace of progressive computation in high-dimensional data analysis, i.e., unit task
completion, human-computer dialogue and visualization update. Their method computes the result within
a limited time constraint and responses to the user. Another example is TopicLens [Kim et al., 2017a]
which adopts the progressive computation of topic modelling. In the era of big data, progressive analytics
potentially plays a key role in interactive analysis systems dealing with large scale of dataset.

7 Conclusion

In this work, we survey the 2016 research progress in Information Visualization and Visual Analytics. 70
recent publications are collected and coded with five descriptors, including basic information, challenges to
tackle, etc. Aligning with the top challenges in the field, we identify the ongoing research topics and the
future research interest. Classical topics keep being solved, such as graph visualization, multi-dimensional
visual analytics. Visual analytics is applied in more and more domains, with advanced machine learning
integrated. The communication and story-telling capability of visualizations is under exploration. Theories
and models of visualization field are proposed to consolidate the foundation of the discipline. Moreover,
researchers are active in exploring new design and exploration philosophies, such as visualization by demon-
stration. Immersive analytics and physical visualization emerge as a new research of interest in recent years.
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