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Fig. 1. (Left) A common visualization of a multi-class scatterplot uses colors to associate the points to their clusters. The uncertainty is
visually encoded by darkening the colors. (Right) Little wings attached to the points have a stronger descriptive power of association
based on the Gestalt principles. The wings length expresses the associating uncertainty of a point.

Abstract—This work proposes Winglets, an enhancement to the classic scatterplot to better perceptually pronounce multiple classes
by improving the perception of association and uncertainty of points to their related cluster. Designed as a pair of dual-sided strokes
belonging to a data point, Winglets leverage the Gestalt principle of Closure to shape the perception of the form of the clusters, rather
than use an explicit divisive encoding. Through a subtle design of two dominant attributes, length and orientation, Winglets enable
viewers to perform a mental completion of the clusters. A controlled user study was conducted to examine the efficiency of Winglets in
perceiving the cluster association and the uncertainty of certain points. The results show Winglets form a more prominent association
of points into clusters and improve the perception of associating uncertainty.

Index Terms—Scatterplot, Gestalt laws, Association, Uncertainty

1 INTRODUCTION

Scatterplots are widely used to represent objects in a dataset on two
orthogonal dimensions. When the data carries a division to multiple
classes (i.e., clustered), the challenge of how to express such a group-
ing arises [33]. Normally, standard visual cues such as different colors
and shapes are utilized, creating a distinct separation between classes,
and associating data points with their cluster.

Common multi-class scatterplot visualization techniques often
present the discrete result of a particular clustering algorithm, and do
not incorporate a visual encoding of the confidence of the underlying
method in its chosen association of the data points to their clusters.
Specifically, the visualization of high dimensional data is often real-
ized with a scatterplot after performing dimension reduction, convey-
ing the population of data points within an embedding space. It is often
heuristics and parametric tuning which govern the decision made by
the employed algorithm, resulting in a sensitivity to different settings,
the most notable of which is the declared number of clusters. Operat-
ing within these confines, a corresponding scatterplot chart reflects the
discrete, hard decision made by the algorithm.

• Min Lu, Shuaiqi Wang, Yang Yue, and Hui Huang are with Shenzhen

University. E-mail: {lumin.vis, shuaiqiwang666, hhzhiyan}@gmail.com,

yueyang@szu.edu.cn. Hui Huang is the corresponding author.

• Joal Lanir is with The University of Haifa. E-mail: ylanir@is.haifa.il.

• Noa Fish, Daniel Cohen-Or are with Tel Aviv Univeristy. E-mail: {noafish,

cohenor}@gmail.com.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication

xx xxx. 201x; date of current version xx xxx. 201x. For information on

obtaining reprints of this article, please send e-mail to: reprints@ieee.org.

Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

In this work, we present an enhancement to the classic scatterplot
chart to better highlight the association of points to their clusters and
convey their confidence according to the clustering decision. We intro-
duce a new means for visual encoding, which augments the geometric
appearance of a data point with a dual-sided trail akin to a pair of wings
(see Figure 1). Winglets are short strokes designed to enrich the visual
information associated with a data point. The geometry of the wings
(length and orientation) expresses the affiliation of a point to the other
members in the cluster, and the uncertainty involved in this clustering
decision.

A key attribute of Winglets, making them an attractive enhancement
to a standard scatterplot, is that they constitute a visualization means,
that suggest or hint at visual cues, rather than enforcing them. Winglets
utilize the Gestalt principles of grouping, and specifically the Gestalt
principle of Closure to shape the perception of the form of the clus-
ters, avoiding an explicit divisive encoding. The strength and compe-
tence of the grouping principles of Gestalt is illustrated in Figure 3,
when a colorless scatterplot is still able to deliver the underlying clus-
tering structure with the use of winged data points. The Closure princi-
ple, together with other Gestalt principles of perceptual grouping such
as Good Continuation that Winglets form in close proximity, aid the
viewer to perform a mental completion of the clusters, assisted by the
depicted level of confidence in the affiliation of the points. Specifi-
cally, the length of Winglets corresponds to the level of associating
confidence, such that points with a high confidence are adorned with
longer wings. As can be seen in Figure 1, points that reside within am-
biguous, in-between regions and are, accordingly, of low association
confidence to their cluster, are enhanced with shorter wings. However,
the subtle hints given by these short wings, together with the Gestalt
Closure, form a more prominent association of points into clusters.



Winglets can be enhanced with various visual attributes, such as
color, shape, length, thickness, etc., spanning a large design space. In
this work, we explore two dominant attributes - length and orientation.
The Winglets orientation of a point visually encodes the local trend of
the cluster it is associated with, and the length reflects the uncertainty
of its association to its cluster.

We explore and analyze the perceptual power of Winglets as a visual
cue and evaluate their added value in a controlled user study where
they are compared to a standard scatterplot that only uses color. Re-
sults of the study validate the advantage of Winglets in better perceiv-
ing the cluster association, and suggest Winglet as a useful tool for
better distinguishing between clusters in multi-class scatterplots.

Fig. 2. The left and right scatterplots use the exact same configuration
of points and coloring. The figure emphasizes the strength of Winglets
in shaping the perception of clusters, by forming horizontal clusters (left)
and vertical clusters (right) on the exact same point configuration. The
two examples also show the interplay between coloring and Winglets.

2 WINGED DATA POINTS AS VISUAL CUES

Perceptual grouping. The perception of association of data points
in multi-class scatterplots is based on the Gestalt principles of percep-
tual grouping [43]. The Gestalt principle of Proximity is of very high
priority in grouping perception - points that are close to each other
tend to be grouped together. In multi-class scatterplots, the position
of points within the chart is highly indicative of their association, and
when using dimension reduction techniques, it is usually determined
by embedding algorithms such as t-SNE, MDS, and PCA.

Common multi-class scatterplots feature color coding to indicate
cluster association. This approach is in line with the Gestalt principle
of Similarity in which items that share the same visual attributes (such
as color) are grouped together. Conversely, the visual cuing introduced
in this paper mainly utilizes the Gestalt principle of Closure to create
a sense of spatial association.

To demonstrate the power of Winglets for grouping perception, Fig-
ure 2 presents an example containing two clusters for which Winglets
shape the perception of group association. The left and right scat-
terplots in Figure 2 use the exact same configuration of points and
coloring, the only difference is the grouping association created by
Winglets. As can be seen in this example, the mere use of Winglets
entirely changes our perception of the grouping. Figure 3 shows the
effect of Winglets in enhancing both colorless and color scatterplots.
In a colorless scatterplot (top), Winglets can be used as an alternative
visual tool to highlight clustering without the need to use colors. In a
colored scatterplot (bottom), Winglets are able to enhance the current
structure and give a clearer sense of the grouping.

The closure principle, realized here by the added Winglets, shares
ideas with the enclosure technique [5] (see Figure 4) that makes use
of contours to indicate grouping by locating points in common regions
[29]. The key difference lies in the nature of these contours, which are
global and indicate a fixed, discrete division of clusters that does not
express individual association. Our added wings, on the other hand,
are local additions that convey the information of which cluster the
point is associated with. For example, the association of points in the
joint region of contours can be ambiguous, while with the addition of
wings, albeit very short ones, their association could still be clearly
perceived.

Fig. 3. An example showing how Winglets can enhance the grouping
perception in a scatterplot, both with and without colors

Fig. 4. The enclosure technique draws contours to visually encode hard
association’s boundaries. Winglets suggest the association in a local
soft manner, with fine-grain depiction on association, especially remov-
ing the associating ambiguity of points in the joint region.

Uncertainty. Typical clustering algorithms associate each point
with one cluster. However, although the algorithm makes a discrete
final choice, the uncertainty of the association is not uniform through-
out. There are various measures to assess the confidence of the associ-
ation of a point to its cluster, independently of the particular clustering
algorithm that was used. In our work, we express the association un-
certainty using the Silhouette Index [32], which measures how similar
a point is to points in its own cluster vs. points in the other clusters.

A common means to visually encode the silhouette value of a point
is to modulate its lightness value, making uncertain points darker
(lower lightness of their color). Typically, points residing within the
overlap between two clusters have a lower certainty. However, not
every overlap in the embedding space is necessarily a true overlap in
the original high-dimensional space. This is demonstrated in Figure 5,
where the green cluster overlaps with two other clusters in the embed-
ding space, but not in the original primal space. The blue and orange
clusters, on the other hand, do overlap, and the points in the overlap
have a low silhouette indexing.

To visually encode the uncertainty using winged data points, we
modulate stroke length, where shorter strokes express a higher uncer-
tainty. However, even significantly uncertain points are decorated with
a minimal set of wings which hints at their distinct association. This
soft association of points with uncertainty is a unique feature of this
visual encoding. Winglets help to perceive the global structure of the
clusters, despite the uncertainty and overlap. In Figure 5, note the
manner in which without the Winglets, the dark points in the overlap
seem cluttered, while with the addition of Winglets, albeit very short
ones, they could be perceived as an integral part of a corresponding
association.



Fig. 5. In these examples, the Green cluster does not overlap with the
two clusters in the original high dimensional space, while the Orange
and Blue ones do. The wings help to perceive the global structure of the
clusters, despite the uncertainty and overlap.

3 RELATED WORK

In Section 2 we discuss multi-class scatterplot visualization in relation
to the perception of groupings of items. In this section, we follow this
approach and review scatterplot-like related work in the perspective of
the Gestalt principles of grouping.

Similarity principle. Many scatterplot techniques are based on
the Gestalt Similarity Principle, where points with similar visual en-
coding are perceived as a group. Color and shape are the most widely
used visual encoding [42]. Color was shown to have better perfor-
mance in some visual aggregation tasks, such as perceiving the av-
erage value in multiclass scatterplots [16]. As the data scales and
overlap increases, research works optimize the coloring strategies to
maintain the separability among classes. For example, to improve
the visibility of different overlapping graphical objects, Luboschik et
al. [25] present a color weaving technique to define the color interlac-
ing pattern in the overlap region. Wang et al. [41] optimize the color
assignment strategy for better class separation. Stone et al. [37] study
how color discriminability changes as a function of the symbol size.
Some other studies focus on specific aspects related to color. Li et
al. [23] study the lightness in the discrimination tasks and model the
discriminability scales of lightness. Matejka et al. [26] identify the
mean opacity of utilized pixels to discern the underlying structure of
the scatterplot. Still, the number of colors or shapes that can be used
effectively to distinguish symbols is quite limited. Colors are reported
to have a fidelity of around 12 distinct hues only [1]. In our work,

we present Winglets as a geometric visual technique, which enhances
multi-class perception as an orthogonal design to color and shape. In
some cases, like the colorless example in Figure 3, Winglets could even
alleviate the demand on color or shape discriminability.

Proximity principle. Another branch of research focuses on op-
timizing the point layout in a scatterplot, aiming to bring points of a
group closer to each other according to the Gestalt Principle of Proxim-
ity. In a typical scatterplot where data are displayed in a Cartesian co-
ordinates of two variables, layout is less flexible because positions are
intrinsically determined. Some work focus on proposing proximity-
based metrics to evaluate the quality of class separation in scatterplot.
For example, Sips et al. [36] propose distance-based Class Consistency
to evaluate the difference between scatterplot in subspace to the distri-
bution in the origin high dimensional dataset, and then select the good
subspace views. Tatu et al. [38] propose perceptual quality metrics
for cluster separation as means for selecting the best scatterplot visu-
alization. To alleviate the visual complexity and increase the struc-
ture awareness, some works perform coordinate distortion and down-
sampling. Keim et al. [20] present an overlap-free distortion technique
to generate the best-possible view of a scatterplot. Chen et al. [9] pro-
pose a hierarchical multi-class down sampling method that maintains
the features, such as clusters, outliers, etc.

When the dataset to be displayed is in high dimensions, researchers
utilize the Proximity Principle more by using dimension reduction
techniques. For example, Principal Component Analysis (PCA) em-
beds the points into a linear subspace of lower dimensionality [19].
Multidimensional Scaling (MDS) [12] adapts scaling cost function
from the original space to output coordinate matrix and compute the
matrix which minimizes the cost function. t-SNE [13] minimizes the
divergence between the distributions measuring pairwise similarities
of input and the low-dimensional points in the embedding, which is
usually used to recover well-separated clusters. For different dimen-
sion reduction techniques, Sedlmair et al. [35] presents an empirical
user experiment to study their combination with scatterplot visualiza-
tion techniques in terms of the class separability. Winglets are pro-
posed as a design tool orthogonal to various layout techniques.

Continuity principle. A class of scatterplot techniques follow the
Gestalt Principle of Continuity. The idea is to show trends in scatter-
plots, based on the human visual tendency to organize symbols follow-
ing an established direction. One application of continuity is to show
trends in scatterplots, by arranging symbols in the same way along
lines or curves. Chan et al. [6] draw small lines to points which de-
pict the local partial derivatives (i.e., sensitivity) from one variable to
the other. In [7], they extend the sensitivity computation to a higher
dimension space, exposing a relationship in a third dimension which
would otherwise be hidden. In [8], they further present a 3D interac-
tive scatterplot cube. The above tangent lines tracing how one variable
changed to another demonstrate the potential of indicating the global
trend by using local strokes. In our work, we further explore the poten-
tial benefit of the Gestalt Closure principle, exploring and leveraging
its ability in the visual representation of association of the data points.

Common region principle. Some other scatterplot techniques lo-
cate points within a common region [29], such as by boundary with
which groups can be perceived together. Collins et al. [11] designed
Bubble Sets which enclose the points of a set. Splatterplot [27] fence
the main distribution of a class with contours while retaining the vis-
ibility of outliers. Jo et al. [18] summarize the design space of aggre-
gated multiclass maps and present a declarative grammar to construct
the aggregation. Our method shares the idea of enclosure but uses
small local strokes rather than a global common region to suggest the
enclosure.

Common fate principle. Besides the static scatterplot improve-
ments for multiple class interpretation, some works propose dynamic
solutions based on the Gestalt Principle of Common Fate. The idea
is to animate points of a group with a coordinated motion so that they
are perceived with a strong association. Wang et al. [40] introduce non-
linear transitions for clustered data over time to improve class tracking



accuracy. Flicker synchrony can be viewed as a special case of com-
mon fate, when points stay stationary but with on-and-off dynamic
patterns. Chen et al. [10] verify that per-class flickering can improve
the interpretation of multiple classes in Scatterplot Matrices with over-
lapping points.

Combining multiple gestalt principles. When multiple Gestalt
principles are applied at the same time in one visualization, there is
a joint and sometimes competing perceptual effect [43]. Kubovy et
al. [21] investigate the effects of similarity and proximity principles
and find that when the two are working together, they have the same
effect as when each one is used separately. Feldman et al. [15] pro-
pose a grouping approach based on a Gestalt Principles named Mini-
mal Model theory, aimed at grouping objects in a logic way. Desol-
neux et al. [14] quantify distinctive Gestalt rules and utilize them for
detecting collinearity, regularity and proximity in images. This work
focuses more on studying how Winglets strengthen the perception of
association and uncertainty with color [4].

4 DESIGN CHOICES AND Winglets CONSTRUCTION

Winglets are defined as the stroke/curve attached to both sides of points
in scatterplots. Winglets can have various design variables, such as
length, color, or thickness, however, in this work, we focus only on
the core expressiveness of Winglets, i.e., orientation and length (see
Figure 6). The orientation of the wings conforms to a global form of
the respective cluster, depicting the associating relationship among the
points. The length of the wings, i.e., the extent of wings along their
orientation, is driven by the associating uncertainty of the data point.
The shorter the wings, the less certain the point is associated with the
other points in its cluster.

Length

OrientationWinglets
- Associating relationship

- Associating uncertainty 

Fig. 6. Winglets encode the association and its uncertainty via its orien-
tation and length.

4.1 Wing Orientation

We considered several design choices for the orientation of the wings,
where they conform to some sort of global form in order to indicate
their associations (see Figure 8). In the figure, we show three exam-
ples of multi-class scatterplots (each one presented in a separate row).
For each example, we show how it is represented according to four
different possible design choices (each design choice is shown in one
column).

The design choices can be categorized into two general types:
Opened and Closed, according to the conformed global form.

Open. In open form, Winglets conform to an acyclic global form.
The two leftmost columns in Figure 8 depict two typical examples of
open orientation: (i) Centroid, where the line segments are pointing
towards a common point (the cluster’s centroid) and (ii) Directional,
where the line segments share a common direction which follows a
representative direction of the cluster.

Note that the Centroid representation does not seem to represent
the clusters well in example (a) (the one highlighted with dashed line
box), in which the clusters are crescent shaped. Likewise, it would be
difficult to distinguish between the clusters using the Centroid repre-
sentation when the clusters have centroids that are near each other as in
example (c) (notice that the two clusters in this example have nearby
centroids because of the outliers). In the Directional representation,
notice that in (b), the represented directed lines fail to represent the
tendencies of the cluster, and the line segment grouping is ambiguous.

Closed. In closed form, the wings hint at their constituent point
association with a global cyclic structure. The two rightmost columns

in Figure 8 depict two possible closed orientation choices. Boundary
Circle is the circumscribed circle that fences the points of a class. Con-
tour is the outline enclosing shape of points. Compared with Contour,
Boundary Circle is more simplified and regulated, increasing the pos-
sibility for different classes to have similar global forms.

Looking at example (c) in Figure 8, we can see that in the Bound-
ary Circle representation, there seems no distinction between the two
classes, since, due to outliers, their boundary circles are almost the
same. This is corrected in the Contour case, where the two classes
could be easily distinguishable. Taking this into account, we favor the
usage of Contour in Winglets.

(a) Density map (b) Isocontours

(c) Referenced contour (d) Interpoloated contours (e) Aligned Wings

seperated contours 

of same isovalue

global referenced contour

Fig. 7. Orienting Procedure: (a) Gaussian kernel density map is calcu-
lated for the plot. (b) isocontours of sampled densities are extracted by
Marching Squares algorithm. (c) a global reference contour is picked for
the coherent perception of grouping, before splitting into multiple con-
tour siblings (annotated in (b)). (d) contours are interpolated from out-
side to inside. (e) points grow their wings along the orientation as their
nearest points on the contours.

Figure 7 illustrates our Winglets orienting method. First, for
each class, its density field is computed by kernel density estimation
(KDE) [31] on a structured grid of 100x100 size. Gaussian kernel
is used, with an automatic bandwidth determination based on Scott’s
Rule [34]. All of the points have equal weights in the density estima-
tion. Next, isocontours are generated in the 2D grid according to a list
of density values. Those density values are equidistantly sampled from
low to high. For each density value (i.e., isovalue), Marching Squares
algorithm [24] is applied to interpolate contour lines through the grid
corresponding to this value. It is not uncommon for points distributed
among several dense clouds but sharing the common isovalues, as a
result, there can be separated multiple contour siblings (e.g., the two
main clouds in Figure 7). To ensure a coherent perception of closure, a
common global referenced contour needs to be determined. Therefore
the third step is to determine the reference contour. The global con-
tour should enclose as many points of the class as possible, but should
also be free from extreme outliers that significantly influence and alter
the contour. Our strategy is to trace isocontours from low density to
high (i.e., outside to inside), and halt at a significant drop in the magni-
tude of contained points, picking the contour right before it. The drop
is heuristically set to 5%. With the reference contour, contours are
smoothly interpolated towards its centroid center. Lastly, each point
is aligned to its nearest point on the contour and Winglets grow in the
same orientation as the nearest point on the contour.

4.2 Wing Length

The uncertainty attributed to the association of a point to a cluster is
mapped to the length of Winglets: τ : S 7→ L., inducing the considera-
tion of two main design variables: range and mapping function.

Range. The choice of Winglets length range scales Winglets from
conventional scatterplot dots to full contour enclosures (Figure 9(top)).
On one extreme end, winged points are degraded to dots when wing
length is minimal. On the other end, as wing length increases, strokes
connect to one another and form full contours. Range selection must
consider the trade-off between association indication and visual clutter
minimization. Longer wings provide stronger cues to the global form
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Fig. 8. Orientation Choice of Winglets: there are two main types of wings’ orientation according to whether the global form is open or closed.
Compared with Contour, orienting towards Centroid, Line or Boundary Circle may fail in some cases (marked by dashed line boxes).

L ~ s^2 L ~ s^(0.5)L ~ s

Fig. 9. Length of Winglets is encoded to the confidence a point is asso-
ciated to its cluster. Winglets can vary with different choices of length
(top) and mapping function (bottom).

but at the cost of increased visual clutter. Conversely, when wings are
made too short, association perception is compromised. In this work,
we heuristically set the minimum bound for Winglets range to be two
pixels wider than the diameter of the point, to ensure wing visibility.

Mapping Function. This function maps the degree of uncertainty

to the length of the Winglets. There exist various choices for this
function serving different visual expressive goals. Generally, it can
be defined as l(i) a ∗ sn

i + b, where si is the Silhouette Index of point
i, si ∈ [0,1]. When n > 1 (Figure 9 left), wing length is shortened
rapidly as uncertainty increases. When n < 1, the length difference
between high and low uncertain points becomes smaller, which might
therefore be used when we seek to emphasize association relationship.
Whichever mapping function is chosen, it ought to be uniform among
clusters within a scatterplot. In this work, we choose the modest n = 1.

5 APPLICATIONS

This section presents two applications of Winglets. In the first, we
apply Winglets on a real dataset, and in the second, we demonstrate the
design choices of Winglets with other scatterplot visualization means.
All examples are implemented in JavaScript for rendering, and Python
for computation. KDE is accomplished with the third-party python
library SciPy and isocontour extraction with scikit-image.

MNIST Dataset. We make use of a subset of the MNIST (Modi-
fied National Institute of Standards and Technology) dataset to demon-
strate the application of Winglets to real data for the purpose of cluster
indication. In MNIST, each instance is an image of a handwritten digit,
thus it contains 10 classes, one per 0-9 digit. Each image instance is
of resolution 28x28, amounting to 784 high-level dimensions. We ran-
domly select 1200 instances to form the experiment dataset.

Figure 10 (top) plots the data using t-SNE embedding, where the
colors are picked from ColorBrewer [3]. In the projection, some
classes are embedded separately from others and can be easily per-
ceived as distinct clusters, e.g., the light blue cluster at the bottom
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Fig. 10. Winglets in MNIST: 1200 samples are embedded in a 2D plot
using t-SNE projection. Each class is assigned a unique color; with
Winglets, associations are perceptually more pronounced when clusters
are broken into parts (A), or are overlapping with one another (B, C).
Winglets convey the association uncertainty, such as high association
certainty points situated far away from the majority of their cluster (D).

left, or the blue class at the top. However, most classes are less dis-
tinguishable, either broken into several parts (e.g., the red class), or
overlapping with others (e.g., the pink and purple classes).

In Figure 10 (bottom), the plot is enhanced with Winglets. We note
that the association is perceptually clearer, and discerning full clusters
is made easier. Points within a cluster are better integrated visually,
even when they are situated far away from one another (e.g., the red
class (A)). Overlapping clusters can also be easily perceived, e.g., the
pink (B) and purple (C) classes.

Another important visual cue given by Winglets is the degree of
association uncertainty. Dimensionality reduction of inherently high

dimensional data results in an oftentimes false impression of stronger
association between close-by, rather than far away, points, in the pro-
jected space. By encoding the association uncertainty (e.g., Silhouette
Index computed based on Euclidean distance in the original space) to
wing length, Winglets indicate the true degree of association of points
to their clusters. For example, point (D) is located far away from the
majority of the points associated with its cluster, but its long wings
convey the high certainty with which it actually associates to the clus-
ter.

Winglets Joint Design. In this example, we combine Winglets with
other design tools in a scatterplot. In Figure 11 (a), color is added as
an enhancement to Winglets. Without color or with weak color sepa-
ration (b), Winglets indicate the association to some extent. In scatter-
plots with high visual clutter, Winglets can be added after data down-
sampling (e.g., reducing density of green dots) with an added density
map to compensate for the loss of information (c). In another case, ag-
gregation is performed to simplify the scatterplot (d). Following Splat-
terplots [28], outliers outside the aggregation region are enhanced with
Winglets, while within the region, Winglets are maintained to show the
point distribution. Note that in this work we do not expand on the de-
sign possibility of Winglets, but focus more on the idea of local strokes
to indicate association according to the Gestalt Closure principle.

(a) (b)

(c) (d)

Fig. 11. Winglet joint use with other design tools in a scatterplot: (a)
Winglets with color; (b) colorless Winglets; (c) Winglets with a density
map to compensate for down-sampling; (d) Winglets with aggregation.

6 EVALUATION

We evaluate the performance of Winglets and their contribution to the
perception of association and uncertainty in a formal user study. We
conducted a controlled user study in which participants performed 4
tasks with both regular scatterplots and ones enhanced with Winglets
(See Figure 1). The goal of the study was to examine whether Winglets
enhance the perception of association and uncertainty beyond that of
a regular scatterplot. To better understand the effect of Winglets given
different scatterplot complexity levels, we examined two independent
variables that might affect the way users perceive Winglets: the number
of clusters in a given scatterplot, and the amount of cluster overlap.

6.1 Methodology

The main independent variable explored in the study was with/without
Winglets. The experimental design was a 2x3x3 within-subject de-
sign with three main independent variables: Winglets (with, without),
amount of Clusters (3, 5 and 8), and the amount of Overlap between
clusters (low, medium, high). Figure 12 by columns shows exam-
ples of scatterplots with different cluster levels and Figure 12 by rows



shows examples of different overlap levels as examined in the study.
Note that in the figures the scatterplots are aligned. In the experiment,
a random rotation was performed to each of the scatterplots.

In addition, we examined four different user tasks. Because of the
complexity of the experimental design, we analyze and report on the
result of each task separately, and thus, do not include the tasks as an
independent variable in our analysis.

Participants. We recruited 44 participants from a local university
(16 Females) with an average age of 23.6 (SD = 2.4). All were science
engineering students mostly at the post-graduate level. 17 participants
reported no prior visualization knowledge at all, 22 participants re-
ported minimal knowledge, and only 5 participants reported having a
medium to high level of knowledge in visualization. Participants were
rewarded with a monetary sum for their participation. All participants
gave informed consent and the study conformed to the ethics proce-
dure of our university.

Materials. We prepared two similar, but not identical, scatterplots
for each level of Cluster X Overlap (9 levels). Half of these were
left as regular scatterplots, while the other half were enhanced with
Winglets. The use of colors in both conditions was the same - we
chose a qualitative color scheme from Colorbrewer [3] to distinguish
between the classes. Within a class, we used lightness to encode the
uncertainty. The shortest wing length was adjusted to the minimal
noticeable length, as explained above.

Tasks. We used four different tasks to evaluate the performance
of Winglets:

T1. How many clusters are there in the graph?
T2. To which cluster does a given point belong to?
T3. Given two clusters, which cluster has a larger overall uncer-

tainty?
T4. Given two points [of the same cluster], which point belongs to

the cluster with a higher certainty?
Tasks are divided according to two dimensions, as listed in Fig-

ure 13. The first dimension is the Content, examining either Associ-
ation perception (tasks 1 and 2), i.e, whether a point can be easily
associated with its group, or Uncertainty perception (tasks 3 and 4),
i.e, how participants perceive the association uncertainty of a given
point. The second dimension examines the Scope of the task. That is,
the level of perception of the scatterplot - either Global (Tasks 1 and
3), i.e., the entire scatterplot, or Local (tasks 2 and 4), i.e., a single
point.

Measurements. For each test, we measured performance in
terms of Completion Time and Accuracy (error rate).

Procedure. The experiment was performed one participant at a
time. Each participant was seated in a quiet room in front of a 24-
inch display screen. The experiment was divided into three parts: the
introductory part, the main experiment and the followup. In the intro-
ductory part, the administrator first briefly informed the participants
about the experiment structure and collected their demographic infor-
mation. Next, the administrator introduced the experiment, showed
some scatterplot examples, and explained the important concepts such
as point association uncertainty, the average and overall certainty of a
group (the sum of uncertainties of a group’s points), etc. Participants
were encouraged to ask any questions they may have, and were then
asked to complete a series of 8 practice trials, in order to let them fa-
miliarize themselves with the tasks, and to minimize possible learning
impediments. Example and practice trials used different scatterplots
than were later used in the experimental trials.

The main part of the experiment included a series of trials, each
containing the task question followed by the corresponding scatterplot.
For each trial, the question was first shown on a front-up page and was
not time restricted, such that the participant was free to press ”next”
at their leisure, in order to reveal the scatterplot at the center of the
screen, along with multiple choice answers to the task question. Par-
ticipants were instructed to select the best answers to the given ques-
tions, and to perform their tasks as quickly and accurately as possible.
Completion time, from the moment the scatterplot was presented until

a selection was made, as well as the selected answer, were automati-
cally recorded. At the end of the trials, the experiment administrator
interviewed participants as per their personal preference among the
two types of graphs.

We assigned each participant to perform only two tasks. We ran-
domly divided participants into two groups, 22 in each. The first group
completed tasks 1 and 3, while the second group completed tasks 2 and
4. Overall, each participant completed 36 trials: 3 (number of clusters)
x 3 (overlap level) x 2 (with/without wings) x 2 (tasks). The order of
the trials was randomized for each participant.

Analysis. We conducted a 3-way analysis of variance (ANOVA)
for each task on completion time, with Winglets (with/without), clus-
ter quantity (3, 5, 8) and overlap (low, medium, high) being within-
subject variables. In addition to reporting statistical significance, we
report effect size, partial eta-squared η2, which is a measure of the
magnitude of the effect of a difference that is independent of sample
size. Landauer [22] notes that effect size is often more appropriate
than statistical significance in applied research. The metric for inter-
preting eta-squared is: 0.01 is a small effect, 0.06 is medium, and 0.14
is large.

6.2 Results

Figure 14 summarizes the results comparing the average completion
time with and without Winglets for the different cluster quantities and
overlap levels over the four tasks.

As expected, for all tasks, a main effect was found for both cluster
quantity and overlap in which an increase in quantity and/or overlap
is directly proportional to the amount of time participants spent on
completing the trial. Next, we report the statistical results per task
separately.

Task 1. Task 1 asked to detect how many clusters there were
in each presented scatterplot. Results indicate a strong main effect
for Winglets, in which performance with Winglets (M=6.36, SD=3.28)
were faster than performance without (M=8.81, SD=5.33), F(1,21) =
44.90; p<0.001; η2 = .681. In addition, a main effect was found
for both Cluster and Overlap, in which the more clusters there were,
the more time it took participants F(2,42)=81.6; p<0.001; η2 =
.795, and the more overlap there was, the higher it took participants,
F(2,42)=33.16;. p<0.001, η2 = .612;

Interestingly, an interaction effect was found between Winglets and
Cluster, F(2,42)=4.307; p=0.020; η2 = .17. An examination of differ-
ences between the completion times with and without Winglets indi-
cates that the difference gets larger as there are more clusters. That
is, the interaction effect suggests that the more clusters there are, the
stronger the effect that Winglets have (in improving detection time over
non-Winglets). An interaction effect was also found between Winglets
and Overlap level, F(2,42)=3.88; p=0.028; η2=.156, suggesting that
the more overlap there is, the strong the effect that Winglets have. Fi-
nally, the 3-way interaction was not significant, F(4,84)=2.13, p=.08.

Looking at error rate, task 1 was relatively simple and there were
almost no cases of error in this task (only three instances, two with and
one without Winglets).

Task 2. Task 2 asked to which cluster does a given point belong
to. Looking at the main effect, the with-Winglets condition (M=7.73,
SD=3.89) was found to be significantly faster than without-Winglets
(M=11.01, SD =6.58), F(1,21) = 27.8, p<.001; η2 = .57. In addition,
a main effect was found for Cluster number, F(2,42)=21.4; p<0.001;
η2 = .501, and for Overlap F(2,42)=9.58; p<0.001; η2 = .313

Looking at the interaction effects, an interaction effect for Winglets
X Cluster was found, F(2,42) = 3.25, p=.049; η2=.134. No interaction
effect was found for Winglets X Overlap (p>.6) or for the three-way
interaction (p>.1).

Looking at accuracy, there was a large difference in error rate be-
tween the two conditions. While the without-Winglets condition had a
total of 42 errors (out of 198 trials adding up to a 21.2% error rate) the
with-Winglets condition only had 7 errors (3.5%). Results of a paired
t-test on the total correct values for each participant showed that these
differences were significant, t(21) = -5.20, p<.001.
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Fig. 12. Cluster and Overlap conditions: three options for the amount of clusters with and without Winglets; three levels of overlap with and without
Winglets. Note that in the figures the scatterplots are aligned. In the experiment, a random rotation was performed to vary each of the scatterplots.

ScopeContent Tasks

Association

T1. How many clusters are there in the graph?

Local

T3. Given two clusters, which cluster has 

a larger average overall uncertainty?

T2. To which cluster does a given point 

belong to?

T4. Given two points, which point belongs 

to the cluster with a higher certainty?

Uncertainty

Global

Local

Global

Fig. 13. Tasks used in the study. Tasks are divided according to two
dimensions: Content and Scope

Task 3. Task 3 asked to determine which cluster had an over-
all larger uncertainty. While with-Winglets (M=8.94, SD=6.00) was
overall faster than without-Winglets (M=9.75, SD=5.08), the differ-
ences for the main effect of Winglets were not significant in Task 3,
F(1,21) = 2.82, p>.1. As expected, a main effect was found for Clus-
ter number, F(2,42)=31.2, p<0.001; η2 = .598, and for Overlap level,
F(2,42)=14.9, p<0.001; η2 = .416.

An interaction effect was found between Winglets and Cluster,
F(2,42) = 6.95; p=.002; η2 = .249. To examine this interaction
more carefully, we compared the with and without conditions for each
Cluster number separately. Results indicate that while for 3 clus-
ters, without-Winglets was faster than with-Winglets (F(1,21)=9.58;
p=.005; η2=.313), for 5 (F(1,21)=19.2; p<.001; η2=.47) and 8 clus-
ters (F(1,21)=11.6; p=.003; η2=.35), this was the other way around,
with a stronger increase in difference for the 8 clusters, suggesting
that the more clusters there are, the stronger the impact of Winglets.
No interaction was found between Winglets and overlap (p>.17) and
no three-way interaction was found (p>.1).

Looking at error rate, there were overal 34 errors in the no-Winglet
condition compared to 24 errors in the with-Winglets condition. Re-
sults of a paired t-test showed that these differences were not statisti-
cally significant, t(21) = -1.60, p=.13.

Task 4. Finally, task 4 asked given two points, which be-
longs to its cluster with a higher uncertainty. No significant main
effect for Winglets was found for task 4 although with Winglets
(M=7.51, SD=3.94) were slightly faster than without-Winglets
(M=8.04, SD=3.41). As before, a main effect was found for Clus-

ter number, F(2,42)=8.35, p=.001; η2 = .285 and for Overlap level,
F(2,42)=2.08, p=0.01; η2 = .813.

Looking at the interactions, no interaction effects were found
(p>.17).

Looking at accuracy, there were overall 6 errors in the with-
Winglets condition (3.0%) vs. 12 overall errors in the without-
Winglets condition (6.1%). These differences were not significant,
t(21) = -1.37, p=.19.

Preference. At the end of each experimental session, we performed
open-ended interviews to gather individual opinions and preferences
with respect to the two conditions. Overall, 40 out of the 44 partic-
ipants preferred Winglets over the alternative. Three participants fa-
vored the scatterplot without Winglets, and one participant remained
neutral. Generally, participants liked Winglets, and thought it enhances
and organizes the scatterplot better.

When asked to elaborate, most participants praised Winglets for its
clear association representation. Many commented that Winglets help
to bind the classes, alleviating cluster identification, especially when
clusters are highly overlapping. As one participant commented: ‘I
can better see the outline of a cluster‘. Some participants pointed out
that with color alone, it is difficult to distinguish between classes in
overlap regions. Others commented that the lightness of the color in-
terferes with the judgement of color hue, for example, dark orange
and brown. For the uncertainty analysis tasks (3 and 4), several par-
ticipants commented that with Winglets, it is significantly easier to
perceive the association uncertainty according to wing length, than
only by color. As one participant said: ‘I felt more confident with
my answer with Winglets‘. Conversely, a couple of participants felt
that Winglets may induce visual clutter, especially when the scatter-
plot is dense. Another participant commented that Winglets may make
it more difficult to distinguish a single point.

6.3 Summary

The results of the user study clearly show the perceptual benefits of
Winglets. The addition of Winglets shortened the overall task com-
pletion time and reduced the overall error count. As can be seen in
Figure 14, the perceptual benefits of Winglets over the standard scat-
terplot were identified across tasks, cluster quantity and overlap level.
Specifically, the association tasks (tasks 1 and 2) showed a statistically
significant improvement with Winglets. In addition, there were less
errors using Winglets and overall, participants preferred Winglets over
the non-Winglets alternative.
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Fig. 14. Time cost with and without Winglets averaged within the three options of cluster quantity (top) and the three levels of overlap (bottom) for
the four tasks, with the error bars of standard deviation.
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Fig. 15. Error percentage with and without Winglets by task.

Our results show a significant advantage for Winglets over the regu-
lar scatterplot alternative in the association tasks (tasks 1 and 2), indi-
cating that they promote faster and clearer association of clusters. The
results also indicate that for the global tasks (1 and 3), the cluster quan-
tity and overlap levels are directly proportional to the prominence of
the advantage of Winglets. This can be attributed to the global nature
of the task which calls for scrutinization of the entire graph, thus leav-
ing more room for Winglets to shape and guide viewer perception in
visually complex scatterplots.

A limitation of the study is using a single scatterplot for each of
the 3x3 (cluster x overlap) conditions. This may cause conditional
differences to be related to idiosyncrasies that occur between the single
plots in each condition. While this has a lesser effect on the main effect
of Winglets which are examined across the other independent variables,
it may limit our results pertaining to the interaction effects. Future
studies should conduct a more thorough evaluation, having multiple
different scatterplots in each condition.

7 CONCLUSION

In this paper we proposed Winglets as a means to guide and direct the
perception of clusters in a multi-class scatterplot. Winglets utilize the
power of the Gestalt grouping principles, and specifically, the Gestalt
principle of Closure. Designed with two dominant variables, orienta-
tion and length, Winglets provide a visual indication of the association
of points to clusters, as well as the uncertainty involved in this associa-
tion. Our evaluation shows that Winglets enhance viewer perception of
multi-class scatterplots in terms of association, and suggests that this
effect might be enhanced under increased graph complexity or clutter.

The addition of Winglets necessarily increases “ink” usage which
induces more visual clutter than is normally observed within a plain
scatterplot. To alleviate the clutter when scaling up, Winglets can
be combined with scatterplot simplification methods, such as aggre-
gation [17, 28], multi-class down-sampling [7], etc. These methods
can be applied to the content for simplification, prior to proceeding
with Winglets for enhancement. In Section 5, we demonstrate the joint

usage of Winglets with other scatterplot means. One interesting deriva-
tive is drawing Winglets alone within the aggregated shapes (Figure 11
(d)), where the thin wings complement the aggregated shapes with
finer information of point distribution, incurring considerably less vi-
sual clutter than the original dots. Other means of joint operators, such
as balancing between the visual inks induced by Winglets and informa-
tion loss by other techniques, are interesting topics for future research.

The idea of Winglets is framed in perceptual grouping and is closely
related to the Gestalt principle of Closure. However, there could be
other emergent features [39] that are involved when Winglets are com-
bined into a whole group, such as collinearity or parallelism formed
by wings in close proximity that facilitate or hinder the grouping per-
ception of Winglets. One future research direction is to more closely
examine the perception mechanism behind Winglets, to gain a better
understanding of how people perceive them and what perceptual mech-
anisms are involved in the grouping of its items.

Winglets are related to the research topic of glyph-based visualiza-
tion [2], where small symbols of multiple visual encodings are com-
posed to depict attributes of data items. Unlike glyphs which are
mostly designed independently from each other, Winglets orient col-
lectively to form a global shape. Other glyph designs share a similar
idea, where the glyph is utilized to indicate flow in vector field visu-
alization [30], or forms small tangent lines for points in a scatterplot
encoding sensitivity [6]. Unlike these designs that utilize the Gestalt
Principle of Continuity to suggest a continuous trend, Winglets are de-
signed to convey association using the Closure Principle. It may there-
fore be interesting to extend glyph designs to encode global trends in
the spirit of Winglets.

In this work, we explore two design variables of Winglets employed
to promote the notions of association and uncertainty. Other design
variables of Winglets can be further explored, such as color, thickness
or shape (not necessarily a curve), and may possibly be designed per
specific usage scenarios. Specifically for color, Figure 3 suggests po-
tential benefit for colorless Winglets. However, the general advantages
and use of colorless Winglets are left to be examined in future works.
In general, we believe that Winglets may inspire further development
of advanced means for scatterplot enhancement, in particular that of
cluster perception for data analysis facilitation.

ACKNOWLEDGMENTS

We thank the reviewers for their valuable comments. This work is
supported in parts by NSFC (61802265, 41671387, 61761146002,
61861130365), LHTD (20170003), Guangdong Provincial Natural
Science Foundation (2018A030310426, 2015A030312015), and the
National Engineering Laboratory for Big Data System Computing
Technology.



REFERENCES

[1] R. S. Berns et al. Billmeyer and Saltzman’s principles of color technology.

Wiley New York, 2000.

[2] R. Borgo, J. Kehrer, D. H. Chung, E. Maguire, R. S. Laramee, H. Hauser,

M. Ward, and M. Chen. Glyph-based visualization: Foundations, design

guidelines, techniques and applications. In Eurographics (STARs), pp.

39–63, 2013.

[3] C. A. Brewer, G. W. Hatchard, and M. A. Harrower. Colorbrewer in

print: A catalog of color schemes for maps. Cartography and Geographic

Information Science, 30(1):5–32, 2003.

[4] F. Cao, J. Delon, A. Desolneux, P. Musé, and F. Sur. A unified framework
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