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Fig. 1. The user interface of the HiTailor prototype system. (a) Transformation operator panel; (b) Tabular visualization panel; (c)
Visualization template panel; (d) Visualization configuration panel.

Abstract—Tabular visualization techniques integrate visual representations with tabular data to avoid additional cognitive load
caused by splitting users’ attention. However, most of the existing studies focus on simple flat tables instead of hierarchical tables,
whose complex structure limits the expressiveness of visualization results and affects users’ efficiency in visualization construction.
We present HiTailor, a technique for presenting and exploring hierarchical tables. HiTailor constructs an abstract model, which
defines row/column headings as biclustering and hierarchical structures. Based on our abstract model, we identify three pairs of
operators, Swap/Transpose, ToStacked/ToLinear, Fold/Unfold, for transformations of hierarchical tables to support users’ comprehensive
explorations. After transformation, users can specify a cell or block of interest in hierarchical tables as a TableUnit for visualization,
and HiTailor recommends other related TableUnits according to the abstract model using different mechanisms. We demonstrate the
usability of the HiTailor system through a comparative study and a case study with domain experts, showing that HiTailor can present
and explore hierarchical tables from different viewpoints. HiTailor is available at https://github.com/bitvis2021/HiTailor.

Index Terms—data transformation, tabular data, hierarchical tabular data, tabular visualization

1 INTRODUCTION

Tabular data has been a critical data management approach and is widely
adopted by many application domains, including scientists, financial
practitioners, and policy-makers [9, 12]. Tabular visualizations (TVs)
either encode a data item within a cell into a single visual element [20,
21, 32, 34] or integrate summary visualizations for a block containing
a rectangular group of continuous cells with tabular data to reveal its
overview and patterns [17, 27]. TVs retain a tabular layout, and the
integration of data and visual representations could avoid additional
cognitive load caused by splitting the users’ attention [18, 31, 41, 42].

Most of the existing studies on TVs focus on simple flat tables [17,
32] but neglect hierarchical tables, whose headings exhibit multi-level
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structures. Hierarchical tables are widely used, especially in statistical
reports and research papers. A research study [9] about web spreadsheet
corpus shows that hierarchical tables account for 32.5% of the tabular
dataset. The hierarchical structure [28, 29] in column or row headings
leads to better capability of efficient data management [14]. However,
hierarchical headings also build incompatible logical and positional
relationships between data items. More specifically, cells in the tabular
data with the same relative positions might have different relationships.
For example, Fig. 1 shows the sales of different types of game consoles
by Nintendo, Sony and Microsoft in different regions from 2013 to 2020.
Each cell in the top row of b1 is the sum of the corresponding values in
the rows below (with a dashed border in blue), while the inner cells of
these rows below are comparable attributes. In addition, some closely
related items in the hierarchical tabular data are not adjacent to each
other. For example, the cells in b2 (with a dashed border in red) describe
the sales of Xbox 360 in June for different years but are separated from
each other in the tabular data. The inconsistency of hierarchical tabular
data poses challenges using TVs. First, to create high-quality visual
representations, users need to specify several discrete blocks of tabular
data and transform them into visualizations repeatedly, making the
whole authoring process tedious and time-consuming. Second, to
allow exploring tabular data from different viewpoints using TVs, users
need to change the positions of cells within tabular data on demand.

https://github.com/bitvis2021/HiTailor


Specifically, they need to place the associated cells in a contiguous
block, enabling the integration of visualization results with tabular data.

We present HiTailor (Hierarchical Table Illustrator), a technique
to support interactive transformation and visualization for hierarchical
tables. HiTailor is based on the abstract model of hierarchical tables by
parsing the column and row headings as hierarchical or biclustering [46]
structures. We identify three pairs of operators for hierarchical table
transformations, including Swap/Transpose, ToStacked/ToLinear, and
Fold/Unfold. Different operators for table transformations are unified
together based on the abstract model, allowing users to transform
hierarchical tables continuously.

Tabular data transformations reorganize hierarchical tables and place
cells together that need to be aggregated and visualized. From the trans-
formation results, users can select a single cell or a rectangular group of
contiguous cells (i.e., block) within the tabular data as a TableUnit and
visualize using different techniques, including unit visualization and
summary visualization based on Vega-Lite. After users specify a Table-
Unit within hierarchical tables, HiTailor recommends corresponding
blocks with different priorities according to their relative positions with
users’ selection in the abstract model. We design different TableUnit
recommendation mechanisms to meet users’ various requirements for
visualizing hierarchical tables, avoiding the repeated and tedious man-
ual specifications and improving the efficiency of tabular visualization
construction. We implement the HiTailor prototype system to support
both exploration and presentation of hierarchical tables.

We validate HiTailor through a use case and a user study. First,
we demonstrate the usability of HiTailor with a use case in real-world
application scenarios, and the results show that HiTailor enables users
to explore and present the hierarchical table from different viewpoints.
Second, we validate the effectiveness of the HiTailor prototype system
through a comparative study with Tableau, and the results show that
HiTailor is more efficient in building an overview for the hierarchical
table as well as analyzing data under different levels of headings.

In summary, the main contributions of this paper are as follows.
First, we construct an abstract model that identifies hierarchies and
biclusters from the headings of hierarchical tables for transformations
and visualizations. Second, we define TableUnit and present recom-
mendation mechanisms based on the abstract model for improving the
efficiency of constructing hierarchical table visualizations. Third, we
propose the HiTailor prototype system for presenting and exploring
hierarchical tables with validating the utilities and effectiveness.

The layout of the rest of this paper is as follows. In Section 2, we
survey existing approaches to the transformation and visualization of
tabular data. Next, we describe in Section 3 the detailed techniques
of HiTailor. We then present the design and implementation of the
HiTailor prototype system in Section 4 before conducting a case study
(Section 5) and a user study (Section 6) to validate the effectiveness of
our method. Finally, we conclude with some discussion and directions
for future work.

2 RELATED WORK

A large number of tools and studies exist for the visualization and
analysis of tabular data. Our literature review emphasizes two critical
aspects, tabular data transformation and visualization.

2.1 Tabular Data Transformation
Most studies about tabular data transformation rearrange the tables with
arbitrary forms into a relational schema. These transformations remove
the hierarchical structures and redundant information from tables and
enable users to import the transformation results into databases or other
data tools. We divide these studies into two categories, non-automatic
and automatic, based on whether human involvement is required. In
addition, we also compare HiTailor with Pivot Table and Tableau, which
support the tabular data analysis through data transformations.

Among the non-automatic transformation methods, some work re-
quires users to define transformation rules explicitly by low-level pro-
gramming. TranSheet [25] provides a spreadsheet-like formula map-
ping language that allows users to perform five value-related and ten
structure-related transformations to specify mappings between source

spreadsheet data and a structured form. Existing studies [8, 36] also
show new possibilities in understanding different data transformations,
which allows users to define functional and structural relationships of
tables using domain-specific language, giving interpretations simulta-
neously. These approaches are highly flexible, but learning new syntax
about data transformation is difficult and time-consuming for users.
In addition to the programming techniques, some work allows users
to transform tabular data interactively. Potter’s Wheel [33] provides
an interactive user interface based on a declarative syntax and allows
users to perform their desired transformations by clicking on different
buttons. Furthermore, Wrangler [26] extends the transformation lan-
guage with a recommendation engine to generate regular expressions,
inferring subsequent transforming operations based on user interac-
tions. However, the above studies focus on simple flat tables instead
of hierarchical tables. Xtable [45] builds an abstract model for hierar-
chical tables and provides an interactive environment for editing their
logical structures. Nevertheless, the model is not designed for tabular
data transformations, because it only builds the relationships between
headings and entries but ignores the relationships between labels in
headings.

Some studies explore automatic techniques to improve the efficiency
of tabular data transformations. We divide these techniques into three
categories, relational schema extraction, example-oriented transforma-
tion, and machine learning based methods.

The techniques based on relational schema extraction extract the
relational schema from original tables explicitly and transform them
into canonical relational tables automatically. These studies explore dif-
ferent heuristic extraction algorithms based on domain knowledge. The
CELLS system [35] allows users to acquire the relational schema from
hierarchical tables using assumptions, including general assumptions
about relationships of table cells and special assumptions about spatial,
style and natural language features. Furthermore, Su et al. [40] model
the structure of hierarchical tables and develop a method to generate a
relational schema based on table boundary features and layout features.

Unlike the techniques for relational schema extraction, example-
oriented transformations do not explicitly define the relational schema.
Users provide the initial and final states in pairs as an example and these
techniques generate a program automatically to implement the same
transformations as described in the example pairs. ProgFromEx [23]
is an algorithm that uses filter programs and associative programs to
infer the desired transformation according to example pairs given by
users. Based on ProgFromEx, a DAG-based algorithm [22] uses a
generate and intersect strategy and defines ranking rules to infer the
final transformation programs. To reduce the difficulty of building
example pairs, Flashrelate [2] requires only some tuples as examples,
including positive examples representing the desired transformations
and negative examples representing the incorrect transformations.

With the generation of tabular data and the development of machine
learning methods, many studies explore more intelligent techniques
for tabular data transformation. Chen et al. [9] use conditional random
fields to identify the hierarchical structure of table headers. This method
focuses on manually-engineered stylistic and formatting features of
tabular cells or row/columns but ignore the spatial information, which
shows how adjacent cells are organized. Dong et al. [11] choose the
multi-task learning architecture for spreadsheets’ structure extraction.
The method comprises two steps: extracting cell features and modelling
table structures, while TabularNet [14] focuses on the second step to
obtain a better result using a neural network structure.

The above automatic techniques regard a table as a data format. They
are mainly used to formalize the original structure to import tables into
other data analysis tools. These techniques require a specific tabular
structure as the transformation objective. However, HiTailor presents a
table as an interface for analysis, and users do not have a clear target
for transformations at the beginning of their explorations.

Meanwhile, several tools for exploring tabular data exist, and the
most typical ones are Pivot Table and Tableau. We compare HiTailor
with these two systems from the following three perspectives. First,
HiTailor can directly take hierarchical tables as its input and recognize
the structures from the headings of hierarchical tables. However, the



other tools can only start from flat tables and require users to reorga-
nize the original data as hierarchical tables interactively. Second, the
transformations supported in HiTailor are designed to facilitate tabular
visualization creation further. By changing the relative position of data
items and adjusting the aspect ratio of the block where data items are
arranged, the transformations enable users to create different visual-
izations using HiTailor. However, transformations in Pivot Table and
Tableau are mainly used for the computation and processing of original
tabular data, including sum and average. Third, HiTailor allows users
to transform the original table through intuitive direct manipulations,
which helps users understand the results of transformations of tabular
data. In comparison, Pivot Table and Tableau transform tabular data
through shelf-based interactions, requiring users to place variables in
rows or columns to organize table headings.

2.2 Tabular Data Visualization
The literature review in this section classifies research work from
two aspects, visualization techniques and visualization targets. Ex-
isting work [17] distinguishes three types of tabular data visualizations,
overview, projection and tabular techniques. We mainly discuss the
tabular techniques and hybrid techniques that combine overview and
tabular approaches. The tabular techniques retain item positions across
columns and encode the data within cells. The hybrid techniques pre-
serve the relative positions between the data subset while the data items
within the subsets are visualized using an overview. We further divide
these techniques into two categories according to the visualization tar-
gets, the first category focuses on a single table, and the second category
builds the correlations between multiple tables.

The tabular techniques for a single table emphasize the values of
individual items. Table Lens [34] explores large tabular data using
a focus+context mechanism to encode cell values based on the data
types of different columns. Furthermore, FOCUS [39] allows users
to merge identical adjacent values to increase readability. Based on
the matrix analysis approach for tabular data proposed by Jacques
Bertin [6], CHART [5] and reorderable matrix [4, 15, 38, 43] embed
visual elements in each cell and reorder matrices to create spatial as-
sociations between similar cells. Moreover, Bertifier [32] significantly
increases functionality and interactivity, facilitating users to divide and
annotate matrices into meaningful groups. Some work also represents
a table matrix as a heat map, which encodes tabular data into colors,
such as ComplexHeatmaps [21]. The above visualization tools focus
on the deterministic tabular data, while Fuzzy Spreadsheet [10] helps
users track and explore uncertainty information, such as likelihood and
probability distributions, to facilitate assumption analysis.

The hybrid techniques aggregate multiple cells of tabular data to
reveal patterns across attributes. ValueCharts [3, 7] addresses the multi-
attribute ranking problem by visualizing each column according to a
series of user-assigned weights using stacked bar chart visualizations.
LineUp [20] establishes connections between stacked bars and inte-
grates them into a slope graph, facilitating users to compare multiple
rankings of the same set of items. Unlike the above studies, Podium [44]
collects users’ preferences of data and inverts the appropriate attribute
weights. Similar to HiTailor, Taggle [17] allows users to integrate
visualizations for the aggregated cells within tabular data. However, it
does not consider the logical structure of hierarchical tables.

Other studies that focus on multiple tables try to build connections
between them. For example, Domino [19] chooses appropriate visu-
alizations for each table within a dataset, connecting multiple subsets
in various ways to show the relationships between them. TACO [30]
focuses on the visual comparison of two different tables, which allows
users to compare values and structures between multiple versions of
the same table at different levels of granularity in an interactive way.

However, existing studies about tabular visualizations always apply
the visual encoding directly to the entries of same row and column, but
does not focus on logical structure of a table with hierarchical headings.

3 THE DESIGN OF HITAILOR

This section introduces the detailed techniques of HiTailor, which
comprises four parts, abstract model, hierarchical table transformation,
TableUnit recommendation, and TableUnit visualization. In particular,

the abstract model serves as the basis of the following three parts. Fig. 2
presents the overall architecture of HiTailor.

3.1 Abstract Model
We summarize the abstract model based on the hierarchical tabular data
in real-world applications. We collect over three hundred hierarchical
tables from the Bureau of Economic Analysis1 and the State Statistical
Bureau2. We also utilize the tabular datasets from existing studies,
including EUSES [16], Fuse [1] and VEnron [13], which are three of
the most widely-used corpora for tabular data research [12].

A table is a collection of interrelated items, which can be divided
into two groups: entries and labels [45]. Entries are the basic data items
displayed in a table. Labels are the auxiliary attribute values to describe
entries, including column headings and row headings based on their
position in the table, as shown in Fig. 3. A cell is the intersection of a
row and a column, consisting of a single entry. A block is a rectangular
group of cells that consists of multiple entries.

The presentation of a hierarchical table refers to how cells and
blocks are determined using position coordinates. Tabular data can be
modelled as a two-dimensional matrix. Users can use the coordinate
⟨x, y⟩ to denote the cell corresponding to column x and row y. While x
is usually indicated by a capital letter corresponding to the alphabetical
order, y is represented by numbers. For example, the cell ⟨2, 2⟩ can
also be denoted as cell B2. As for a block, it can be represented by
the cell in its upper left corner and the cell in its lower right corner
together. For example, the block with upper-left coordinate ⟨4, 7⟩ and
upper-right coordinate ⟨6, 8⟩ can be denoted as block D7:F8.

The logical structure of a hierarchical table is about associations
among labels and entries. More specifically, the logical structure allows
users to use labels rather than positional coordinates to locate the
entries. However, unlike single flat tables, locating an entry along a
row/column requires a group of labels since the headings of hierarchical
tables consist of multiple levels. Therefore, it is necessary to determine
the relationships between labels.

Our abstract model of hierarchical tables should accurately specify
both logical structures and presentations (R1). In addition, it also needs
to facilitate the design of tabular data transformations and visualizations
(R2). Driven by the above requirements, we design an abstract model
which focuses on the logical structure of hierarchical tables. The
abstract model consists of the following two parts, the relationships
between labels and the associations between labels and entries.

The relationships between labels. The headings have an inherent
hierarchical structure, with several independent or related hierarchies.
When the labels of child nodes in the hierarchies are identical, the
abstract model identifies the bidirectional connections between the
nodes at different levels and merges these hierarchies as a bicluster.
Compared to independent hierarchies, a bicluster enables users to swap
two adjacent levels and update the entry positions in the tabular data
correspondingly. The followings show the formal specifications of
hierarchies (denoted as H) and biclusters (denoted as B) in the abstract
model.

Bi =

 labeli,0
...

labeli,ni

×Bi+1, Bl =

 labell,0
...

labell,nl

 (1)

Hi, j = [labeli, j]×

 Hi+1,0
...

Hi+1,ni, j

 , Hl, j =

 labell,0
...

labell,nl, j

 (2)

For the specification of biclusters, Bi indicates the bicluster start
from level i, labeli, j denotes the inner jth label, and ni refers to the
number of labels at level i within bicluster. For the specification of
hierarchies, Hi, j is the jth hierarchy starts from level i, labeli, j is the
label of the root node in the hierarchy Hi, j, ni, j denotes the number of

1www.bea.gov
2www.stats.gov.cn/english



Fig. 2. The pipeline of hierarchical table visualization with HiTailor. The visualization construction starts from the original tabular data. HiTailor
constructs an abstract model by parsing the column and row headings of tabular data. Then users can transform the hierarchical tabular data by
direct manipulation and select a specific TableUnit. HiTailor recommends other related TableUnits with different priorities. By setting the priority
range, users can determine a series of targeted TableUnits. For the visualization of TableUnit, users select a visualization template from the gallery
and adjust the visual mapping configurations. The visualization authoring is an iterative process based on the abstract model. Users can interactively
explore the hierarchical table from the visualization results and export the results as images. In particular, the procedures with green marks require
users’ interaction, and the others with orange marks indicate automatic processes.

labels in the jth subtree, and l is the number of levels in the headings
of tabular data. By analyzing if the labels in different hierarchies have
same names, HiTailor can automatically identify whether the structure
is a bicluster or a hierarchy. For example, the row headings (RH) in
Fig. 3 consist of two independent hierarchies and the column headings
(CH) are modelled as a bicluster, as shown below. In particular, we use
symbols to indicate the statistics by aggregating multiple values. For
example, & refers to the sum of all values at the lower level.

RH =


[Asia]×

[
[CHN]×

[
PEK
SHA

]
, [JPN]×

[
OSA
T KY

]]

[EUR]×
[
[FRA]×

[
PAR
MRS

]
, [GBR]×

[
LON
LIV

]]
 (3)

CH =

[2020
2021

]
×

 &
spr.
aut.

 (4)

In the formal specifications, labels in headings are arranged from
top to bottom (row heading) or left to right (column heading) in the
presentation of the hierarchical table. Therefore, the specification can
determine not only the logical structures but also the relative positions
between labels in both column and row headings (R1).

The associations between labels and entries. The abstract model
allows users to locate cells or blocks using labels at the bottom level of
row and column headings. For example, the cell (⟨131⟩) highlighted in
Fig. 3 can be located with label SHA in the row headings and label spr
in the column headings. However, given that the labels may have the
same names, we identify each label at the bottom level using a label
sequence from the root node to the target node, denoted by seq(label).
For example, label SHA in Fig. 3 can be identified by seq(SHA) =
(Asia, CHN, SHA). The formal specification of seq(label) is defined as
follows.

seq(labelk) = (root, . . . , labelk.parent, labelk) (5)

Based on this, we define row locator and column locator to repre-
sent cells and blocks, which are formally defined as follows.

row/column locator = [seq(label1), . . . ,seq(labeli)] (6)

In the above definition, i represents the number of labels used as
locators in row/column headings. In particular, locating a single cell
requires only one label from row and column headings, respectively.
Taking Fig. 3 as an example, the highlighted cell can be specified as
follows: {

row locator = [(Asia,CHN,SHA)]
column locator = [(2020,spr.)]

(7)

Determining a block often needs more than one label. Note that a
block might contain cells from either one hierarchy or across multiple
hierarchies. In particular, when a block contains all the child nodes, the
sequences can be merged with the help of a wildcard (denoted as *).
Taking Fig. 3 as an example, seq(PAR) and seq(MRS) can be merged
as (Europe, FRA, *) and Eqn. 8 below indicates the highlighted block.{

row locator = [(Europe,FRA,∗)]
column locator = [(2021,∗)]

(8)

The abstract model brings two benefits by using labels to locate
entries instead of coordinates. First, users can change the relative
positions of entries by manipulating the labels directly, supporting the
interaction design of hierarchical table transformations. Second, the
relationships between entries are determined by labels in the headings,
which serves as the basis for recommendation (R2).

3.2 Hierarchical Table Transformation
We investigate transformations of hierarchical tables through user in-
terviews and analysis reports for the collected tabular data. First, we
recruit 15 participants to collect their possible transformations for dif-
ferent hierarchical tables and then use each table in the dataset to



Fig. 3. The left figure shows an example of a hierarchical table. The right
figure marks primary components of the hierarchical table: row headings,
column headings and entries. The cell indicates a single entry and
the block indicates a continuous rectangular area consisting of multiple
entries.

conceptualize possible analysis tasks and corresponding transforma-
tions. We also refer to the analysis reports of statistical experts on data
websites and summarize the corresponding transformations for their
target analysis tasks. After that, we examine the applicability of these
transformations to other data and remove those operations with low
generalizability. While the selected operations cannot cover all trans-
formations over hierarchical tables, we carefully choose the common
ones that can facilitate the creation of tabular visualizations.

Embedding visualizations into tabular data has two characteristics.
First, the underlying data of visualization results is within a contiguous
block in the tabular data. Second, the size and aspect ratio of the
visualization results depend on the area occupied by the corresponding
block in tabular data. We finally choose six general operations that
can facilitate the creation of tabular visualizations and divide these
operations into the following three groups.

Swap and Transpose change the relative positions of labels in
column/row headings at different levels and update the inner entries
accordingly. The Swap operation is designed to put related entries
adjacent to each other within a continuous block, and the Transpose
operation is for swapping the height and width of blocks. The Swap
operation enables analysts to change the order of two adjacent levels
inside row or column headings, while the Transpose operation supports
to exchange row and column headings. Users can select the appropriate
level for transformation according to different analysis requirements
to change the position of relevant entries, making comparable entries
spatially adjacent to generate visualizations. For example, as shown in
Fig. 4, to analyze the changes in data from different years in the same
season, users swap the two levels in the column headings, as shown in
Fig. 4(b). To analyze the variation of data from different seasons in the
same country, users transpose the second level of the column headings
to the row headings, as shown in Fig. 4(c).

ToLinear and ToStacked add or delete new nodes to the hierar-
chy/bicluster and update the corresponding entries without changing
the relative positions of labels in the headings. Based on the logical
structure of headings, the ToLinear operation is designed to calculate
some statistics for corresponding entries of all nodes in the hierarchy
or bicluster, including sum and average, which serve as the underlying
data of summary visualizations. These statistics facilitate users in un-
derstanding and analyzing data values from an overview perspective,
as shown in Fig. 4(d). However, these derived attributes are usually not
comparable to the original values and hinder users’ efficient analysis
by separating related entries into several discontinuous blocks. For
example, the sum is often much larger than the original values, making
the visualization less effective if encoding the sum statistics and other
ordinary item values together. The ToStacked operation allows users to
discard these derived attributes from hierarchical tables.

Fold and Unfold support transformations between labels and entries.
These two operations are designed to help users rearrange data items
in the tabular data to create visualizations that better fit certain aspect
ratios. The Fold operation flattens hierarchical tables by converting
one row under a multi-level heading into multiple rows under a single-

Fig. 4. Four different transformations based on the original hierarchical
table (a). In particular, the figure above does not illustrate ToStacked and
Unfold operation because these two operations are opposite to ToLinear
and Fold respectively. (e) presents the results after folding the second
row and the first row.

level heading, as shown in Fig. 4(e). Conversely, the Unfold operation
creates new column headings from data values, which can further
distinguish between different attributes of a single column. In addition,
it transforms the repeated entries into labels in the headings so that
the original data, which is arranged only horizontally or vertically, can
be arranged on the whole two-dimensional space based on the logical
structure. Because the area with a high aspect ratio is not suitable to
create various visualizations (e.g., scatter plot), Unfold operation can
rearrange the original data in a rectangular area with a better aspect
ratio. For example, Fig. 4(a) shows the result after applying the unfold
operation to the right table of Fig. 4(e). More specifically, all data
entries in the table of Fig. 4(a) are originally arranged within the single
column (value) in the table of Fig. 4(e).

3.3 TableUnit Recommendation

We define a cell/block specified by users in the hierarchical tables as
a TableUnit, which is regarded as the primary component for tabular
visualizations. To prevent users from repeatedly selecting multiple
TableUnits and specifying the same visualization configurations, it is
necessary to recommend TableUnits that are logically related to the
user-selected one. In this section, we introduce different mechanisms
for TableUnit recommendation.

The recommendation for TableUnits is based on the logical structure
of hierarchical tables. According to Sec. 3.1, the logical structure
can be represented as relationships between labels. Therefore, our
method describes a TableUnit using labels, in order to facilitate the
recommendation process. More specifically, we define row descriptor
and column descriptor for each TableUnit, using the information from
locators of the cell/block corresponding to the TableUnit. A descriptor
is defined as a set of labels, which consists of the last non-wildcard
label of all sequences from the corresponding locator. Taking Fig. 3 as
an example, the row and column descriptors of the block located with
Eqn. 8 are [FRA] and [2021], respectively.

After users select a TableUnit, our method computes the priorities
of other related TableUnits to describe their relationships and then
generates recommendations automatically. To calculate the priority



Fig. 5. The two figures in the first row show two different methods to
calculate the priority of descriptors. (a) shows the topology-based mech-
anism and (b) shows the name-based mechanism. The two figures in
the second row show different TableUnits for recommendation according
to the priority range specified by users.

of TableUnits, we first design the priorities of its descriptors. Since
a TableUnit has both row and column descriptors, we define their
priorities respectively, denoted as row priority and column priority.

The priority of a descriptor indicates its correlation with the descrip-
tor of the user-selected TableUnit, where a higher priority indicates a
stronger relevance. Based on the abstract model explained in Sec. 3.1,
the correlations between labels are reflected in two aspects. First, hier-
archies establish the topological relationships between sibling labels.
Second, biclusters complement the relationships between labels with
the same name. Therefore, we generate two types of priority computa-
tion methods for descriptors (i.e., topology-based and name-based).

In both of these two methods, descriptors of the user-selected Table-
Unit are identified as reference descriptors. Taking the user-selected
TableUnit shown in Fig. 3.3 as an example, the reference descriptors
include [SHA] from row headings and [spr] from column headings.
We assign specific numbers to descriptors as their priorities, where a
smaller number indicates a higher priority. Therefore, the priority of a
reference descriptor is assigned as 0. It is worth noting that row and
column priorities are calculated separately. The details of these two
mechanisms are described as follows.

Topology-based Mechanism. When computing the priority of a
descriptor d, the topology-based method finds the lowest common
ancestor (denoted as lca) of d and its reference descriptor (denoted as
ref ) based on the abstract model. Then we use the level of ref and
lca (denoted as Lre f and Llca) to calculate the priority number of d
(denoted as Pd), as shown in Eqn. 9. In particular, we assign Llca as
0 if the lca does not exist. For example, the reference descriptor in
Fig. 3.3(a) is [SHA], and the lowest common ancestor of [TKY] (at level
3) and [SHA] is [Asia] (at level 1). Therefore, the priority of [TKY] is 2.

Pd = Lre f − Llca (9)

Name-based Mechanism. When calculating the priority of a de-
scriptor d, the name-based method focuses on the label of both d and
the reference descriptor (denoted as ref ). If d and ref have exactly the
identical label, the priority of d is assigned as 1. Otherwise, the priority
is assigned as 2. For example, as shown in Fig. 3.3(b), the reference
descriptor from column headings is [spr]. As a result, the priority of

other descriptors with the name spr is assigned as 1, while the priority
of other descriptors is assigned as 2.

Based on the priority computation methods of TableUnit descriptors
mentioned above, our method allows users to identify the priority of a
TableUnit through its row/column priority. After selecting a TableUnit,
users can choose a method to compute the row and column priority,
including the topology-based method and the name-based method. Fur-
thermore, they can select the priority range of both row and column,
and then HiTailor will recommend TableUnits according to the selected
range. For example, Fig. 3.3(c) and (d) shows the recommended Table-
Units according to users’ specified priority range. Note that HiTailor
does not make recommendations when the selected TableUnit does
not conform to be within a single subtree from both row and column
headings, because selecting such TableUnit is usually used to analyze
specific data items.

3.4 TableUnit Visualization
After selecting TableUnits, users need to visualize the selected data
items and embed the visualization results into hierarchical tables. Be-
cause TableUnit is the primary component for tabular visualizations,
we introduce the visualization techniques for a single TableUnit in this
section. In addition, we also discuss how to apply the visualization
specifications of the selected TableUnit to other recommended ones.

3.4.1 TableUnit Decomposition
A TableUnit selected by users is either a cell or a block. According to
the abstract model explained in Sec. 3.1, a cell or a block is specified
by its corresponding labels. For example, each entry in Fig. 6 has five
attributes. One is the data value of entry, and the others come from
the labels used to locate the entry, including row headings and column
headings. Typically, the labels are in string format (e.g., name or date),
and the data value is a quantitative number. We define the attributes
from labels as nominal data and the data value as quantitative data.

Tabular visualization techniques embed the visual representations
into hierarchical tables. Therefore, associating visual elements with
their underlying data items could facilitate users’ understanding and
exploration. When a TableUnit contains only one cell, TVs retain a
tabular layout and place the visual element within the cell. However,
when a TableUnit contains multiple cells, the visual elements’ positions
in the visualization results might encode its attribute values. According
to the above decomposition method, a TableUnit with multiple cells will
have a sequence of attributes from column/row headings as nominal
data. To make the visual elements in the visualization results align with
the headings, the decomposition results of TableUnit keep the attributes
sequence. We define the attributes from row headings as vertically
arranged in a strict order called y-nominal data, which is similar to row
headings.

3.4.2 Visual Mapping Mechanism
To improve the intuitiveness of visualization results, we provide re-
stricted configurations about visual mapping. As mentioned above, we
decompose the attributes of TableUnits into three categories, x-nominal
along with the horizontal direction, y-nominal along with the vertical
direction, and the quantitative values within the cell. Most visualization
techniques have one or multiple axes arranged in horizontal/vertical
direction. Creating TableUnit visualization requires users to encode
different attributes of data items to horizontal/vertical positions along
the x/y axis in the configuration. The visual mapping does not enable
users to bind the attributes of TableUnit to any axis arbitrarily. More
specifically, it only allows users to bind x-nominal data to the horizontal
axis or y-nominal data to the vertical axis.

In addition, we carefully design feasible parameters of visual map-
ping mechanisms, which realize the reusability of visualization spec-
ifications. For hierarchical table visualization, users need to reuse
the configuration specification of the selected TableUnit for others
with a similar logical structure. However, the underlying data change
completely for different TableUnits. Therefore, the attributes in the
original specification should change accordingly. Our visual mapping
mechanisms decouple visualization configuration with the underlying



Fig. 6. The decomposition of a TableUnit in hierarchical table consists
of three components, x-nominal data, y-nominal data, and quantitative
values.

data. For instance, a user creates a stacked bar chart by encoding the x-
nominal data to horizontal positions, the value to height, and y-nominal
data to color. Then, the user wants to apply this configuration to other
TableUnits. Our method analyzes the underlying data, and binds the
corresponding x-nominal data, data value, and y-nominal data to the
same visual channels, getting a logically coherent visualization result.

3.4.3 Visualization Templates
We choose several visualization techniques for TableUnits in hierar-
chical tables and divide these visualizations into the following four
categories to meet users’ requirements of tabular data analysis. In
particular, unit visualization is designed for the TableUnit with only
one cell. The other three types of visualizations belong to summary
visualization, and are suitable for TableUnits with multiple cells.

Unit Visualization visualizes the value of each cell, showing the
relative magnitude between comparable cells without changing the
structure of a table. It normalizes values for one user-selected cell,
and other related cells determined by the recommendation mechanism
explained in Sec. 3.3. Users can encode the value of each cell with
different visual channels such as color, size and position. The corre-
sponding visual elements will be embedded in each cell when users
determine the specifications. The unit visualization creates a handy way
to perceive the relative value of tabular data. For instance, by encoding
value with the color density, users can learn the cells with the maximum
or minimum value according to the color shading like a heatmap.

Data Overview is designed to show the values of all cells within
TableUnit. The visualization techniques for data overview consist of
bar chart, stacked bar chart, ranged dot plot, box plot, strip plot, parallel
coordinate, multi-series line chart, pie chart, and radial plot. We divide
the data overview technique into two categories according to whether
aggregating values in TableUnit. The techniques without aggregation
encode each value in TableUnit into a visual element and compute
the position based on the cell’s value. For instance, the stacked bar
chart arranged along the horizontal direction binds the x-nominal data
to the x-axis, the value to the height, and the y-nominal data to the
color channel. However, aggregation techniques compute a single
value (such as minimum, maximum, average) from multiple values in a
row/column and then encode it to the visual element. For example, the
ranged dot plot along the horizontal direction binds the x-nominal data
to the x-axis and encodes the minimum and maximum values from the
column to the position of visual elements.

Trend Tracking enables users to understand variance along the col-
umn or row. It encodes the sequence of headings and the values of one
row or column to support users learning the trend. The visualizations
for trend tracking consist of the horizon graph and line chart. The hori-
zon graph is appropriate for showing the trend tracking visualization
because it is designed to encode the value in a space with limited height
like the table cells [24]. Users can bind the column headings (e.g.,
years) to the x-axis and bind values of one row (e.g., France) to the
y-axis, and then they can learn the changes in financial transactions
according to the variance of height and color.

Correlation Exploration allows users to explore the correlations
between multiple rows or columns within the TableUnit. The visualiza-
tions about correlation exploration consist of scatterplot and heatmap,
which requires users to bind the quantitative values to the axis. More

specifically, users can specify the data organization structure to column
or row at first and then encode the data to the different axis to validate
whether some rows or columns have correlations.

4 THE HITAILOR SYSTEM

We have designed and implemented a prototype system to support users
authoring the tabular visualization for hierarchical tables interactively.

4.1 Design Principle
The prototype aims to enable users to create the visualization results
for hierarchical tables interactively. We identified the following four
design principles for the prototype system. These four principles are
designed to reduce users’ burdens of creating tabular visualizations and
analyzing hierarchical tables in different scenarios using HiTailor.

DP1: Support both presentations and explorations for tabular
data. Data presentation means creating static visualizations to com-
municate insights, while exploration indicates creating visualization
to understand data and find insights interactively [17]. To support the
explorations, HiTailor enables interactive transformations and visual-
izations. To support the presentations, HiTailor is able to export the
visualization results for tabular data as static images for further editing.

DP2: Build the correlations between the data items and visual
elements in tabular visualization. The benefit of the tabular visual-
ization technique is reducing the cognitive burdens by integrating data
with visualizations, because users do not need to switch their attention
between visualizations and data values [31]. More specifically, it re-
places the data values in tabular data with visualizations, which help
users understand their correlations. For unit visualization, each cell
serves as the basic TableUnit and users can easily understand detailed
relationships. However, it is difficult for users to identify the complex
relationships in summary visualizations generated based on data blocks
consisting of multiple cells. The prototype system supports the inter-
active highlighting between the visual elements and the underlying
row/column headings. In addition, hovering on the visual elements can
check the detailed data attributes of the underlying data items.

DP3: Balance the direct manipulations and configuration pan-
els. Direct manipulation is a natural and intuitive interaction approach.
However, it is difficult for users to specify complex parameters pre-
cisely. The goal of HiTailor is to enable analysts to author tabular
visualizations with minimal difficulty and tedium. Therefore, HiTailor
provides both direct manipulation and configuration widgets. HiTailor
supports the direct manipulation interaction for tabular data transforma-
tions. Direct manipulations have a large operational space, and users
might be overwhelmed. HiTailor provides several visual cues as the
guidelines to suggest possible transformations for users. In addition,
HiTailor provides configuration panels for several parameter widgets
based on Vega-Lite to allow users to adjust the values directly. Fur-
thermore, to facilitate users associating the parameters and row/column
headings, the specific row or column will be highlighted when selecting
the detailed parameters in the widgets.

DP4: Reduce the cognitive burden for constructing visualiza-
tions for the TableUnit. As mentioned above, block visualizations
of TableUnit are supported by Vega-Lite, a high-level grammar of in-
teractive graphics. It provides a declarative JSON syntax to create an
expressive range of visualizations for data analysis and presentation.
Compared to the imperative programming methods, Vega-Lite reduces
users’ cognitive burden of visualization construction. However, it still
consists of many parameters to support its expressiveness. To improve
the efficiency of visualization construction, HiTailor utilizes the tem-
plate editor technique authoring approach. Specifically, it contains
the initial step of visualization template selection and the refinement
of the selected visualization. HiTailor makes simplifications for the
parameters configurations panel in the refinement step.

4.2 User Interface and Interaction
The user interface of HiTailor consists of the transformation operator
panel, tabular visualization panel, visualization template panel, and
visualization configuration panel, as shown in Fig. 1. These four inter-
active panels support the following process of tabular data visualization.



First, users upload a hierarchical table, and then the HiTailor pro-
totype system presents it in the tabular visualization panel and parses
the tabular data into an abstract model. HiTailor identifies hierarchi-
cal/biclustering structures from the row and column headings according
to the relative position of cells. Then users can make transformations
for the hierarchical table through interactive manipulations (e.g., drag
and drop) or click the operators in the transformation operator panel
directly (DP3). In particular, users’ transformations for hierarchical
tables also change the underlying abstract model accordingly.

Based on the transformation results of hierarchical tables, users can
specify a cell/block within the tabular data as a TableUnit. According
to users’ selections and the abstract model, HiTailor recommends other
related TableUnits with different priorities, shown in the tabular visual-
ization panel. More specifically, the priority of different TableUnits is
encoded into the color density, and users can adjust the selected range
of TableUnit to apply the same visualization template.

For TableUnit visualization, users begin by choosing a visualization
technique from the visualization template panel and update the specifi-
cations and detailed parameters in the visualization configuration panel.
Taking users’ selected data blocks as input, the configuration editor
shows the preview of visualization results based on Vega-Lite (DP4).
When users are satisfied with the preview of visualization results, they
can apply the visualization template to all TableUnits (user-selected
and recommended) in the tabular visualization panel.

Note that tabular visualization authoring is an iterative process.
Users can specify other blocks as TableUnit and apply different vi-
sualization templates to these blocks. Based on the visualization results
of hierarchical tables, users can explore the data interactively, including
checking the underlying data of the visualization and highlight other
related data items in the table (DP2). When users are satisfied with
the tabular visualization results, they can export the results in different
formats to support flexible presentations of hierarchical tables (DP1).

5 USE CASE: GAME HARDWARE SALES ANALYSIS

We validate the effectiveness of HiTailor through a case study. The
analysis is carried out by analysts of the game market, using the sales
data of game hardware. The results of the case study show that HiTailor
facilitates users to gain insights from hierarchical tables, which is a
common task in business intelligence.

The use case is based on the game hardware sales dataset from
VGChartz3, a website that weekly estimates hardware and software
sales in the video gaming industry. The analysts collect the historical
sale data items, which record the sales of consoles from different
manufacturers in several regions for each quarter from 2013 to 2020.
Then they construct a hierarchical table in the xlsx format, widely used
for Excel. The column headings of the hierarchical table are about
quarters and years, and the row headings are about consoles from
different manufacturers in several regions. Multiple factors influence
the sales of game hardware, and one of the essential aspects is software.
However, the preferences of consumers in different regions vary a
lot. Therefore, the release of game software may impact hardware
sales differently. In addition, the changes in hardware sales are also
influenced by the prices, the release of new products, etc. To explore the
patterns for hardware sale variance and find explanations, the analysts
should comprehensively analyze different aspects of hierarchical tables.

The analysts load the tabular data of hardware sales, consisting
of 32 columns and 42 rows, into the HiTailor prototype system. To
explore the relationships between time and sales, the analysts apply the
Swap operation for two rows about years and seasons to reshape the
hierarchical table and the ToLinear operation to get the overall sales of
every platform. HiTailor allows users to select different parts of tabular
data to apply different visualizations to build an overview, with keeping
the table structure. The analysts first select the first row (Nintendo,
Nintendo 3DS, &) of the hierarchical table and use the horizon graph
as shown in Fig. 1(b3), a visualization for trend tracking, to show the
variance of overall sales over time. After applying this visualization
template to all recommended blocks, the analysts can summarize and

3www.vgchartz.com

compare the trends of different hardware. The analysts get two findings
from the visualization results: First, unlike other electronics, the sales
of game hardware do not hit the highest point in the first year. The sales
peaks in the middle of the hardware’s life cycle and then decreases
gradually. Second, the sales of game hardware fluctuate periodically.
All hardware sales increase at the end of each year dramatically because
of promotion events on Black Friday. In addition, the PlayStation Vita
(PSV) of Sony also has a sales spike around September 2015, mainly
because of the release of popular game software on this hardware.

Next, the analysts want to analyze the sales of different products
in different regions. They choose the unit visualization to show the
first four products of Nintendo. More specifically, it maps the selected
cells to rectangles and encodes the value to size and color. From the
visualization results (Fig. 1(b4)), the analysts find that the sales of
Nintendo 3DS (3DS), Nintendo DS (DS), and Wii (Wii) are similar in
Europe, Japan, and North America. However, the sales of Nintendo
Switch (NS) in North America are better than in Europe and Japan. This
validates that the Nintendo Switch (NS) is more popular than the other
three hardware. The visualization results explained above focus on the
variance of absolute numerical values. Furthermore, to explore the sales
proportions among different regions of Xbox One and PlayStation Vita,
the analysts select the radial plot, a visualization template belonging
to the data overview category. The visualization results (Fig. 1(b6))
show that the sales of Xbox One mainly come from North America,
while the gaming market in Japan almost has no interest in Microsoft’s
consoles, and the sales of PlayStation Vita are on the contrary.

After confirming consumers’ distinct preferences among different
regions, the analysts use the box plot to explore consumers’ purchasing
behaviors for PlayStation 3 (PS3) and PlayStation 4 (PS4). According
to the visualization results shown in Fig. 1(b5), sales of two hardware
in Europe and North America are better than in Japan, especially for
PlayStation 4 (PS4). Another finding is that the box plot about the
sales of North America always consists of an outlier, which indicates
an exceptionally high sale record. After checking the values in the
raw table, the analysts found that all these outliers indicate the sales
in the last quarter. It is because of the promotion events explained
above. However, no outlier exists in the boxplot of Japan’s sales, which
inspires that chain retail stores should have different stocking strategies
for these regions throughout the year.

6 USER STUDY

We conducted a comparative study to evaluate the effectiveness of Hi-
Tailor for analyzing hierarchical tables. To make it a fair experimental
comparison, we chose baselines from existing tools with similar func-
tions to HiTailor, which support table transformation and visualization
generation. Tableau and Microsoft PivotTable are two well-known
tools for interactive tabular data analysis. PivotTable supports powerful
tabular data transformations but fails to provide in-situ visualization in
the table, i.e., directly visualizing the transformed data in the hierarchi-
cal tables. However, HiTailor adopts similar workflows with HiTailor
that integrate tabular data transformation and visualization seamlessly.
Therefore, we chose Tableau as a reasonable counterpart with HiTailor.

6.1 Experiment Dataset

In the experiment, we used the artificially generated tabular data for
better control of the experiment. To help users understand the data and
the analysis tasks, we generated an experiment dataset positioned in the
semantic context of industrial productivity over time. Specifically, the
tabular data are designed with the row headings ‘cities’ and ‘industries’
and the column headings ‘years’ and ‘quarters’. Multiple datasets are
sampled from this tabular frame, which have the same size and tabular
structure but different data values.

6.2 Experiment Tasks

We choose two tasks for the comparative study, mainly referring to the
process of visual information seeking [37], which includes obtaining
an overview (Task 1) and exploring data in detail (Task 2). In particular,
the headings of the hierarchical tables consist of labels on multiple
levels. One characteristic of tabular data is that the inner entries may



Fig. 7. The result of the user study. (a) shows the time distribution of
participants using HiTailor and Tableau to complete different tasks. (b)
shows the ratings from different aspects of HiTailor on a five-point Likert
scale (N = 16). The rightmost column indicates the average and standard
deviations. (Q1: Easy to Learn. Q2: Easy to use. Q3: Interactions
intuitive. Q4: Transformations helpful. Q5: Recommendation helpful. Q6:
Visualization satisfactory. Q7: Facilitate data understanding.)

be associated with headings at different levels. Therefore, the second
task is to simultaneously explore the data entries at different levels.

Task 1: This task requires users to understand the total GDP of each
city in different years (the trend of GDP over time). Specifically, users
are asked to identify the city whose trend is different from the others.

Task 2: This task is about analyzing the total and each industry’s
GDP for different cities. Users first need to identify the years when the
total GDP reaches the maximum value, and then compare the portion
of each industry’s GDP over the above years. Specifically, users are
asked to indicate the industry with the most significant portion.

6.3 Experiment Configuration

Participants and Apparatus. We recruited 16 participants, including 6
females and 10 males. All of them were undergraduate or postgraduate
students with different majors, ranging from computer science to math-
ematics and statistics, and they often use table to organize and analyze
data in their practical applications. The user study was performed in
a quiet computer lab on a Dell Precision T5500 desktop PC, with an
Intel Xeon Quad-Core processor, 8GB RAM, and an NVIDIA Quadro
2000 graphics card driving a 23-inch LCD 1920 × 1080 pixel monitor.

Procedure. The experiment session lasted around one hour. First,
we provided a tutorial about HiTailor and Tableau, including the func-
tionalities of different transformations and the interactions for creating
tabular visualizations. We asked the participants to perform two tasks
mentioned above on the generated datasets using Tableau and HiTailor,
respectively, and record their results and the time of completion. Within
each task, users underwent each of the two techniques in counterbal-
anced order. At the end of the experiment, we asked the participants to
rate HiTailor from different aspects using a five-point Likert scale. Note
that we asked users to complete each trial as accurately and quickly
as possible and informed them that accuracy and completion time are
equally important. We also conducted a follow-up interview for the
participants for about 10 minutes to collect their feedback on HiTailor.

6.4 Experiment Results

We analyzed the completion time and accuracy for each task. Through
the analysis of variance, we found that using different techniques
had a significant effect on time (Task1: F = 5.82, p < 0.05; Task2:
F = 9.85, p < 0.01). According to the result of the t-test, HiTailor is
significantly faster than Tableau in both tasks (Task1: p < 0.05; Task2:
p < 0.01), as shown in Fig. 7(a). As for the accuracy, Task1 had an
accuracy rate of 78.57% using Tableau and 92.86% using HiTailor,
while Task2 had an accuracy rate of 64.29% using Tableau and 85.71%
using HiTailor. Then, we analyzed the results of user ratings on the
usability of HiTailor, as shown in Fig. 7(b). We found that HiTailor
received a high rating from participants about facilitating the under-
standing of the data (µ = 4.43, σ = 0.24). Many participants agreed

on the usefulness of our transformations (µ = 4.29, σ = 0.20) and
recommendation (µ = 4.29, σ = 0.13).

7 DISCUSSION AND FUTURE WORK

Scalability. The abstract model of a hierarchical table can accurately
determine its presentations. Therefore, the computational complexity
of data transformation is O(n), and n denotes the number of entries
in tabular data. In addition, we optimize the rendering mechanism
to improve the scalability of HiTailor for large tabular data. More
specifically, the system only renders the visible part of the tabular data.
The implementation of the HiTailor system is based on Scalable Vector
Graphics (SVG) and the rendering performance will decrease due to
a large number of DOM elements. In the future, we plan to mitigate
this problem by replacing the DOM-based rendering with an HTML5
Canvas implementation.

Evaluation. We present the user experiment, which compares the
effectiveness of completing tabular data analysis tasks using HiTailor
and Tableau in Sec. 6. Considering Tableau and HiTailor are both de-
signed for facilitating users’ analysis of hierarchical tables, we choose
the subjects in these related areas, including computer science, mathe-
matics and statistics. These subjects use tables for data processing and
management or have experience with data visualizations. For future
work, we will continue to investigate the analysis of tabular data for
general users and validate our approach’s effectiveness for a wider
population range.

Visual encoding consistency. The authoring of table visualizations
with HiTailor is an iterative process, as shown in Fig. 2. Therefore, the
table visualization consists of different TableUnits specified by users
many times, and the visualization specifications of these TableUnits
are independent. From the perspective of the whole tabular visualiza-
tion, assigning the same visual channel (e.g., color) to semantically
unrelated attributes can confuse users. However, depending on the
number of independent TableUnit, it might not be possible to choose
different visual channels for all TableUnits in the tabular visualization
results. Therefore, HiTailor allows users to reuse the visual channels
and improve tabular visualization results’ readability. Users can view
ranges with consistent visual mappings interactively.

Intelligent transformation and visualization. HiTailor enables
users to present and explore hierarchical tables through transformations
and visualizations. The visualization process for the hierarchical tables
highly relies on users’ interaction. Future work could explore more
intelligent tabular visualization techniques of hierarchical tables. First,
it requires defining metrics to evaluate the transformation results. In
addition, we plan to take the semantics of column/row headings of
tabular data into consideration by using the knowledge graph techniques.
To reduce the cognitive burden for authoring visualizations, we also
want to explore the interaction approaches based on natural language.

8 CONCLUSION

We have presented HiTailor, a technique for authoring tabular visualiza-
tions of hierarchical tabular data. HiTailor is based on an abstract model
for hierarchical tables, which defines its column/row headings as hier-
archical and biclustering structures. HiTailor implements three pairs of
transformation operators based on the abstract model and enables users
to transform the hierarchical tables interactively. Users can specify a
data cell/block within the body of a hierarchical table as TableUnit, and
HiTailor will recommend the other TableUnits according to different
mechanisms to improve the efficiency of visualization construction.
We demonstrate the utility of the HiTailor system through a qualitative
study and a comparative study. The result shows that the HiTailor
system can enhance users’ analysis and understanding of hierarchical
tables. HiTailor is available at https://github.com/bitvis2021/HiTailor.
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