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Abstract Appropriate color mapping for categorical
data visualization can significantly facilitate the
discovery of underlying data patterns and effectively
bring out visual aesthetics. Some systems suggest pre-
defined palettes for this task. However, a predefined
color mapping is not always optimal, failing to consider
users’ needs for customization. Given an input cate-
gorical data visualization and a reference image, we
present an effective method to automatically generate
a coloring that resembles the reference while allowing
classes to be easily distinguished. We extract a color
palette with high perceptual distance between the
colors by sampling dominant and discriminable colors
from the image’s color space. These colors are assigned
to given classes by solving an integer quadratic program
to optimize point distinctness of the given chart while
preserving the color spatial relations in the source
image. We show results on various coloring tasks, with
a diverse set of new coloring appearances for the input
data. We also compare our approach to state-of-the-
art palettes in a controlled user study, which shows
that our method achieves comparable performance
in class discrimination, while being more similar to
the source image. User feedback after using our
system verifies its efficiency in automatically generating
desirable colorings that meet the user’s expectations
when choosing a reference.
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1 Introduction
Color is one of the most important visual channels
in data visualization. It is widely used to encode
different data attributes and facilitate visual search.
In particular, when presenting categorical data, a
good color strategy can generate a visually attractive
representation, clearly discriminate between different
data categories, and help users effectively gain
understanding and insight from the data [1, 2].
Nonetheless, it is often difficult for even professional
designers to design appropriate color mappings for
data classes, especially when they have specific
requirements, e.g., tuning color for a certain design
atmosphere or personality. Designers usually go
through a process of trial and error to find suitable
colors for tasks.

Generating a suitable color mapping for particular
data often has two steps: designing or choosing a
good color palette, and assigning the selected colors
to different classes. Existing strategies mainly focus
on one of the two steps. For example, ColorBrewer [3]
and Colorgorical [4] provide predefined color palettes
that ensure discriminability and aesthetics. Color
assignment methods automatically assign the colors
within a given palette to the data classes in the
visualization chart according to semantics [5], visual
appeal [6], or class structure visibility [7]. As color
appearance often depends on the relationship to
surrounding regions [8], combining the two steps can
potentially improve class structure visibility [9].

Informal interviews with designers indicate that
they often use images as references for color mapping.
From a reference image, designers can extract its
prominent colors to generate a visually pleasing color
palette, as well as use it to assign selected colors to
the classes. If the distribution of main colors, i.e.,
their positions, proportions, and harmonious spatial
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arrangement, can be kept in the target, we assume
that aesthetic perception of the reference image is
thus transferred to the target.

Inspired by this, we propose to generate image-
guided colorings of a given categorical visualization.
A good coloring should allow easy perception of class
structure and resemble the reference image in order
to meet the user’s expectations; see Fig. 1.

To achieve this goal, the selected colors need to be
discriminable, easy to identify, and representative of
the reference image. Furthermore, Wang et al. [7]
suggested that the colors assigned to overlapping
classes should have large perceptual differences.
Differing from them, we additionally wish to retain
the spatial distribution of colors of the source image,
preserving both their adjacency relationships and
the locations of dominant colors. Recently, Lu et
al. [9] proposed to solve palette extraction and color
assignment from the full RGB space in a unified
optimization framework. However, an image’s limited
colors can cause the optimization to get stuck in a
local optimum. Hence we solve palette extraction and
color assignment in two stages; see Figs. 2(c) and 2(e).

To extract distinct colors, we look at palette
selection as a farthest-point sampling problem [10]

Fig. 1 A given categorical data visualization is colored to follow
colors in different images. Each coloring is diverse with good visual
separability of class structures, and is similar to its reference image.
Class separation scores are 18,472, 15,382, and 17,149, respectively.

in the color space of the image, considering linear
separation [11], the minimal color CIEDE2000
distance between any two colors, and their frequency
of occurrence in the image. We iteratively update
the color samples after initialization.

We solve the color assignment problem by finding
a consistent one-to-one correspondence between the
colors and class labels. This is formulated as an
integer quadratic program containing unary and
binary terms. The unary term evaluates each class–
color assignment based on spatial position. The
binary term assesses a pair of assignments based on
the distance of two classes, the perceptual distance of
the two colors, and their adjacency in the reference.
An approximately optimal solution is found efficiently
for this NP-hard problem.

In summary, the main contributions of this paper
include:
• a color mapping method to extract the color

palette of an image and coherently apply it to a
categorical data visualization to generate distinct
and aesthetic color appearances,

• a new way to extract a categorical color scheme
representative of the source image, which can
create a more distinct color palette than existing
methods, and

• an optimization method to produce the color–
class mapping, considering both spatial relations
and color discriminablity, with comparable
performance in class discrimination to prior
works [7], yet being similar to the source image.

2 Related work
Existing related work on color design can be divided
into three categories: color palette design, palette
extraction from images, and color suggestion.

Fig. 2 Pipeline. Given an input categorical data visualization with M classes (a) and a reference image (b), we extract a distinct M-color
palette from the image, indicated in RGB space by the green spheres (c). The radius of each sphere encodes the color’s occurrences. After
analyzing the color spatial distribution in the image (d) and the class distinctness of the given chart, we assign these colors to the classes (e).
While making classes easy to discriminate, our mapping also follows colors in the source image. It keeps the major color adjacencies of the
source, highlighted by the green box. It further retains the position of the light pink, a concentrated dominant color in the source.



Image-guided color mapping for categorical data visualization 3

2.1 Color palette design
Creating discriminable and aesthetically pleasing
color palettes is a demanding task when visualizing
categorical data. Guidelines for manually designing
color palettes have been provided by several
researchers. Colors in a palette design should meet
the criterion of separability from each other [12] or
overall compatibility [13]. Healey [11] proposed a
method to choose effective colors allowing rapid and
accurate identification of color targets. Recently,
Bartram et al. [14] suggested that even a palette
of a small set of colors could be manipulated to
communicate emotions. These guidelines clarify the
considerations for color design, but still, designing a
palette from scratch is usually a cumbersome task for
most users.

There are many online toolkits for color palette
selection. Adobe Color (https://color.adobe.com)
and COLOURLovers (www.colourlovers.com) are
two websites commonly used to select color themes.
ColorBrewer, developed by Harrower and Brewer [3],
provides a large number of predefined, recognizable
palettes for thematic maps. Recently, Gramazio et
al. [4] proposed Colorgorical, a tool that allows users
to create customized color palettes by balancing
discriminability and aesthetic preference.

Methods for rating, expanding, or optimizing
a given color palette have also been proposed.
O’Donovan et al. [15] studied color compatibility
theories using large datasets and offered a learned
model to evaluate a coloring combination of five colors.
Later, Kita and Miyata [16] extended this model to
rate arbitrary-sized color combinations considering
human aesthetic preferences, and extended color
palettes while retaining color harmony. Fang et
al. [17] optimized a given color palette by maximizing
the perceptual distances while meeting a set of user-
defined constraints.

However, choosing from pre-generated color
palettes is not always intuitive, as color appearance
depends on the relationships to surrounding regions
and the spatial arrangement of classes varies
according to the data.

2.2 Palette extraction from images
A possible route for generating color palettes is to
capture the prominent colors from an input image.
When representing the image, the discriminability of
the extracted colors is not significant.

Lin and Hanrahan [18] created five-color themes
from natural images based on a study considering
the human perception. Their results closely match
human-extracted themes. Poco et al. [19] developed
a method to semi-automatically recover a color
encoding from a bitmap visualization image by
extracting the color and text information from its
legend, enabling recoloring of the static image.

Recently, researchers in image processing looked
at color palette extraction as a means to allow non-
experts to recolor an input image by editing the
colors in the extracted palette. In 2015, Chang et
al. [20] proposed a variant of the k-means algorithm
to generate a suitable palette of a user-chosen
size. Tan et al. [21] proposed a geometric method,
identifying the color palette as the vertices of a
simplified convex hull of image pixels in RGB-space.
They also proposed a simple scheme for automatic
palette size selection in following work [22]. The
picked colors do not necessarily exist in the image.
A different approach proposed by Aksoy et al. [23]
automatically estimates a statistical color model
from an image based on an energy formulation.
It automatically decides the sizes of prominent
colors and exclusively selects colors that exist in the
image. Zhang et al. [24] presented an approach to
edit colors of an image so as to preserve inherent
color characteristics of the source by extracting and
adjusting a compact color palette.

Some approaches deal with image collections. The
group color theme extraction method of Nguyen et
al. [25] derives the group color theme from input
images’ individual color palettes, for recoloring
multiple images consistently. To capture color
styles of a fine art collection, Phan et al. [26]
introduced a method to order extracted color
palettes, enabling palette prediction and interpolation.
These approaches focus on image collections with a
consistent color style or color theme.

2.3 Color suggestion
Many methods take the characteristics and content of
the data into consideration when performing coloring.

Some methods combine colors with semantics, so
that the color mapping matches typical colors for
items defining the categorical data. Lin et al. [5]
presented an algorithm to automatically select
semantically-resonant colors from the 20 common
colors suggested by Tableau to represent data. These



4 Q. Zheng, M. Lu, S. Wu, et al.

resonant colors for each category were computed
by finding relevant images using Google Image
Search. Later Setlur and Stone [27] explored linguistic
information to generate semantic coloring. However,
not all classes shown in a visual chart have explicit
semantics.

Some works aim to generate aesthetically pleasing
color suggestions for uncolored pattern templates.
Kim et al. [6] proposed a perceptually driven method
for automatically coloring a 2D pattern template
with a given color palette, guided by commonly
accepted rules in color theories. They considered
color harmony and luminance contrast of adjacent
segments. Lin et al. [8] presented a probabilistic
factor graph model for automatically generating color
suggestions for an input pattern. The model was
trained on example patterns made by experts. Due
to the significant differences between patterns and
visualization charts, their trained model does not
work well on visualizations. Furthermore, the color
variation between available example visualization
charts is much smaller, making it hard to train the
model.

Other works aim to generate color suggestions
that make class structures more noticeable. Lee et
al. [28] introduced the concept of class visibility to
measure the utility of a color palette to present a
categorical structure. Based on this concept, they
proposed a method to optimize the luminance and
saturation of assigned colors, to better display all
class structures. Recently, Wang et al. [7] proposed a
color assignment method with a given color palette
for multi-category scatterplots, by modeling class
separation considering spatial relationships, density,
and point clusters. In following work, Lu et al. [9]
introduced a data-aware color palette framework
for both creating and assigning color palettes with

maximal discriminability. While these systems
are similar to our approach in considering color
relationships as well as the spatial configuration of
data, our method also takes the spatial distribution
of colors in an image into consideration, making the
colored visualization similar to the reference, to meet
users’ expectations.

Recently, Bohra and Gandhi [29] proposed a
system for automatic colorization of graphic arts.
Itautomatically selects a relevant reference image for
any input pattern template from a built-in dataset,
and then propagates the reference’s colors to the input.
The color propagation considers the composition of
colors and the adjacency of colors, as we do. However,
they do not encode color differences within the color
propagation. Instead, our approach incorporates both
the color spatial relations of the reference and class
visibility of data for an optimal solution.

3 Palette extraction
A palette C containing |C| colors is denoted by C =
{c1, · · · , c|C|}. If C is a distinct color palette, the
minimal color distance of any two colors in the palette,
denoted by

dC = min
1�a,b�|C|,a�=b

E(ca, cb) (1)

should be large. Here, E(ca, cb) represents the
difference of two colors ca and cb in the CIEDE2000
color distance metric [30], which is commonly used
for measuring the difference of colors within a color
palette [4, 9].

To form a distinct palette C of a given size M ,
the selected colors should be prominent, exist in the
image, and approximate the image’s color space. This
is a farthest-point sampling problem in the color space
and is hard to solve directly. To quickly generate an
approximate optimal solution, we first reduce the

Fig. 3 Example of palette extraction. (a) Reference image, and (b) its colors in RGB space. (c) The color space is divided into voxels, and
too light or too dark colors are moved. Green dots indicate the initially selected colors. (d) Left to right: initialization, after one iteration, and
the final palette. Each iteration updates every color to increase the distinctness score. The two most similar colors at each step are highlighted
by red dots; their distinctness score is shown below. (e) The final colors are shown as green dots in RGB space.
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sampling space, create a good initialization, and then
iteratively update the color samples; see Fig. 3.

Though an image’s distribution (Fig. 2(b)) only
covers a subset of the whole color space, it still has
thousands of different colors. A minimum CIELAB
interval, indicated by the noticeable difference
function, is required to discriminate the colors of
two graphical marks [31]. Thus, we perform color
quantization by dividing the CIELAB color space
into voxels in steps of 5 units along each axis. For
each voxel, we record its frequency na (the number
of pixels whose color falls inside it), and compute its
mean color ca. We then exclude colors that are too
light (L > 85) or too dark (L < 20) [4]. To remove
outliers of low frequency, we successively exclude the
color with the lowest frequency until the frequency
sum of all removed colors exceeds 3% of the input
image. Figure 3(c) shows colors by spheres of different
sizes according to frequency.

We use the initialization of Zhang et al. [24] to
select M dominant colors. We successively choose
the color with the highest frequency, and update the
frequencies of remaining colors by different factors to
penalize colors similar to it:

nτ
a = nτ−1

a (1 − exp(−(E(ca, cb)/σ)2)
where τ represents the iteration index, n0

a = na, and
σ is set to 80 by default. We repeat this until M

colors have been selected. However, some chosen
colors may still be too similar to distinguish; see for
example the light and dark gray marked by red dots
in the leftmost palette in Fig. 3(d).

We gradually update the palette C to increase dC

by farthest-point sampling [10]. In each iteration, we
successively move each color in the current palette to
a new position that maximizes the minimum distance
and its linear separation to the rest of the colors
in the palette, in ascending order of frequency. To
replace a color, we first select the k = 3 farthest
colors from the rest of the palette as candidates using
CIEDE2000 color distance. Then we evaluate each
candidate ca by considering its linear separation sa,
color frequency na, and minimal distance:

da = min
cb∈C\ca

E(ca, cb)

The score of ca is a weighted combination of the three
terms:

S(ca) = wssa + wnna + da (2)
We approximate sa in the u–v plane of the CIELUV
color space as the minimal distance to the convex hull

of the remaining colors of the palette [11]. Weights
ws and wn balance the three terms. After analyzing
these terms’ ranges, we set ws equal to 0.15 and wn

equal to the inverse of 0.03% of the image’s pixel
number by trial and error. The minimal distance
dC increases in each iteration. This scheme usually
converges after several iterations; we stop after 20.
Figure 3 shows an example.

The reference image is then approximated by
the color palette C. A pixel is either deleted or
represented by the most similar color in C if their
CIEDE2000 color distance is smaller than a threshold
(15 by default); see Fig. 2(d).

4 Color assignment
4.1 Goals
The given visualization contains N points Q =
{q1, · · · , qN } with M different labels L = {l1, · · · ,

lM }. The points with label li are denoted by Qi. The
aim of color assignment is to find a bijective mapping
between the colors in palette C and the data labels,
represented by a set of M pairs (i, a), where li ∈ L

and ca ∈ C.
We formulate color assignment as an integer

quadratic program, taking into consideration both
unary and binary terms: for a candidate assignment
(i, a), we measure how well label li matches color
ca; we also evaluate how compatible each pair of
assignments (i, a) and (j, b) is. From a list of
candidates—in our case, all possible assignments—
we compute an optimal subset to form a one-to-
one correspondence mapping that maximizes the
quadratic score function; see Figs. 4(a) and 4(b).

4.2 Pairwise term
Classes with close-by points should be assigned with
colors having large differences and adjacent in the
reference if possible. Based on this intuition, we define
the compatibility score of a pair of assignments (i, a)
and (j, b) using three terms:

S((i, a), (j, b)) = D(Qi, Qj)A(ca, cb)E(ca, cb) (3)
while D(li, lj) represents the closeness of two
point sets, E(ca, cb) is the color difference in the
CIEDE2000 metric, and A(ca, cb) measures the
adjacency of two colors in the reference image.

Let qi′ denote a point in Qi. We define D(Qi, Qj)
as the summed closeness between qi′ and Qj :
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Fig. 4 Color assignment. (a) From a list of candidates, we aim to compute an optimal bijective mapping. Each symbol represents a class. (b)
For clarity, the point set is repeated below; the virtual boundary of each class is shown by dashed lines. We measure the quality of a class–color
assignment (the unary term) by comparing the locations of the class and the color; the bar chart on the top left corner shows the quality scores
of two assignments. We also measure the quality of a pair of assignments (the binary term), considering the closeness of the two classes, the
difference of their colors, and the adjacency of the two colors in the image; the bar chart on the top right shows the quality scores of two pairs.
(c) The result using both terms is most similar to the reference.

D(Qi, Qj) =
∑

i′∈Qi

1
|N (i′)|

∑
j′∈Ωi′

g(‖qi′ − qj′‖) (4)

This is inspired by point distinctness which measures
the distinctness of a data point from its neighbours [7].
Here, |N (i′)| represents the number of points in qi′ ’s
nearest neighbors N (i′). Within them, the points
with label lj (the intersection of Qj and N (i′)) is
denoted Ωi′ . We define the nearest neighbors N (i′)
using the α-shape graph as suggested by Lu et al. [9],
which selects the closest neighbors of a given point
within a certain radius. g(‖qi′ − qj′‖) is a distance-
based function that varies inversely with Euclidean
distance between point qi′ and point qj′ ; we use
g(d) = 1/d. D(Qi, Qj)E(ca, cb) measures the visual
separation of point sets Qi with color ca and Qj with
color cb.

The spatial adjacency of color ca and cb is computed
based on the closeness score of their associated pixel
sets. We assign large values to close-by colors in the
image and small ones to faraway colors:

Ã(ca, cb) = |Pa| D(Pa, Pb)∑
1<c<|C|,c�=a

D(Pa, Pc)
(5)

where Pa and |Pa| are the pixel group represented by
color ca and its number of pixels, respectively. We
measure how much a color surrounds other colors,
and divide the value by its number of pixels. As
Ã(ca, cb) is not symmetric, we define A(ca, cb) by
linearly mapping max(Ã, ÃT) to the range of [1, 2].
We choose a narrow range for color adjacency as it
is less important than point distinctness. When they
conflict, the latter should dominate.

Figure 5 shows an example of assigning colors to a

Fig. 5 Assigning color using only the binary term. (a) Some
adjacent colors in the image, e.g., the two in the dotted pink box,
are distinguishable, but with low discriminability. (b) Ignoring color
differences in the binary term may cause assigning these colors to
close-by classes, diminishing the chart’s distinctness. (c) Considering
the color difference can avoid such cases.

six-class pie chart when only considering the binary
term. The closeness score of any two pie sectors
D(Qi, Qj) is either set to 1 if they are adjacent
or 0 otherwise. When the color difference score is
removed from Eq. (3), some adjacent colors with low
discriminability are given to close-by sectors, which
diminishes the chart’s distinctness: see Fig. 5(b).

4.3 Unary term
The unary term measures the quality of a class–color
assignment. We give a high score to an assignment
(i, a) if the locations of points Qi in the visualization
are similar to the locations of color ca in the reference
image. We align the image to the visualization by
their boundaries using scaling and translation, and
then measure the distance between the point set Qi

and the pixel set Pa:
S((i, a)) = f(d̃H(Qi, Pa)) (6)

where d̃H(Qi, Pa) is the one-sided Hausdorff distance
from Qi to Pa, and f(d) is inversely related to
distance. The one-sided Hausdorff distance is
preferable, as in our case we desire partial matching
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of the point set to the pixel set. We use f(d) =
exp(−8d2) so that f(d) declines rapidly from 1 to 0.1
as d grows from 0 to 0.5. Note that image size is
normalized to [0, 1]. To speed up the computation
of d̃H, we apply the Euclidean distance transform to
binary images, each of which represents the pixels of
a color. Figure 4(b) shows an example on the left.

4.4 Solution
Given a candidate set F of |F| assignments, a chosen
subset is represented by an indicator vector x ∈
{0, 1}n where chosen elements have a flag value of 1.
The optimal subset is the solution of the objective
function as in Eq. (7):

x∗ = argmax xTMx such that Bx = 1 (7)
where Bx = 1 represents the constraint that x is a
bijective mapping. M is an |F| × n matrix. The k-th
and m-th assignments are denoted by (i, a) and (j, b),
and we have

Mk,m =
{

S((i, a), (j, b)), k �= m

wuS(i, a), k = m
(8)

where wu is a weight to balance the binary and unary
terms. We use wu = 0.2 maxk,m,k �=m Mk,m in our
setting. Though this is an NP-hard problem, an
approximate solution can be found efficiently. We use
the integer projected fixed point (IPFP) method [32]
to solve it. Algorithm 1 shows the key steps for
color assignment. Figure 4(c) shows how the result
considering both unary and binary terms is most
similar to the reference.

Note that if we ignore the color spatial information
in the reference image, i.e., exclude the unary term

Algorithm 1 Color assignment
Input: A reference image, a color palette C, and a
visualization containing a point set with labels L.
Output: A bijective mapping between C and L,
represented by a set of pairs (i, a) with Li ∈ L and ca ∈ C.
Initialization: Generate the set F of all possible
assignments.
for all assignment (i, c) ∈ F do

Compute its quality S((i, a)) by Eq. (6);
for all assignment (j, b) ∈ F\(i, a) do

Compute the compatibility score of two assignments
S((i, a), (j, b)) by Eq. (3).

end for
end for
Solve for the optimal indicator vector x∗ using Eqs. (7)
and (8).
Return the chosen subset of F whose flags from x∗ = 1.

and the color adjacency score (A(ca, cb)) in the binary
term, the objective function is the same as that of
Wang et al. [7]. Instead of using a genetic algorithm,
we solve the problem by graph matching, which can
quickly return an approximately optimal solution.
By respecting both the spatial positions of colors
and their spatial relationships, we can transfer colors’
spatial information to the visualization.

5 Results and applications
Here we first describe implementation details. After

that, we show coloring results for different types of
charts. Lastly, we present two extensions in which
user-specified constraints are added.
5.1 Implementation details
Although the core algorithm requires a point set with
class information as input, we can easily apply the
approach to other categorical visualizations, such
as bar charts and pie charts, by sampling points
inside the region of each class. We use Poisson
disk sampling to generate samples from a blue noise
distribution [33]. We sample about 300 points in each
example; see the leftmost of Fig. 6. The randomness
in generated samples may affect the class closeness
score D(Qi, Qj), so we sample 10 times and use the
mean closeness score.

We implemented the algorithm using MATLAB.
All experiments were run on a computer with
an Intel Xeon Gold 5118 processor with 64 GB
memory, and took less than 2 s. We designed an
interactive interface using JavaScript to invoke the
core algorithm; see Fig. 7. The interface works with
SVG files as inputs and outputs. Users can select
or upload an input visualization, and then upload
or choose an image to set the visualization’s color
scheme. For more information, please see the video
in the Electronic Supplementary Material (ESM).

5.2 Results
The class separation score for a coloring is∑
(i,a)

∑
(j,b)

D(Qi, Qj)E(ca, cb). This measurement is

also dependent on the points’ distributions Q, so
it is only meaningful to compare these scores for
different color mappings of the same data. The
spatial consistency between colors in reference images
and those in the coloring is measured by two
components. The position score of a color assignment
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Fig. 6 Color mappings of a bar chart and a pie chart guided by five images. We generate points inside different bars and sectors by Poisson
disc sampling. Regions with the highest spatial position similarity and with the highest adjacency similarities are highlighted by circles and
rectangles, respectively.

Fig. 7 Our interactive interface for color visualizations.

is defined by the unary term:
∑
(i,a)

S((i, a)). The

adjacency score is defined by the binary term:∑
(i,a)

∑
(j,b)

D(Qi, Qj)A(ca, cb).

Figure 6 shows five different images and
corresponding colorings of a bar chart and a pie chart
with 6 classes. Most of the linear color arrangements
in the first and second images are transferred to the
corresponding colored bar charts. Most of the circular
color arrangements in the third and fourth images
also present in the colored pie charts.

All the input scatterplots except in Fig. 8 were
generated from simulated categorical data. We
randomly set each cluster’s center, and then sampled
points for each cluster using a Gaussian distribution,
following Wang et al. [7].

Figure 9 shows examples of two scatterplots of
6 and 8 classes colored according to five different
images, together with their extracted palettes. Note
that an image’s 6-color palette is not a subset of its
8-color palette, for increased distinctness. We can see
that classes are easy to spot even though all points
are represented by quite small dots. Although the
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Fig. 8 Five color mappings of a 10-category scatterplot of the MNIST dataset. Class separation scores are shown by gray bars, together with
the extracted palettes.

Fig. 9 Color mappings of two scatterplots with eight and six classes, guided by five images. Class separation scores are shown by gray bars,
together with the extracted palettes.

two scatterplots have different class spatial structures,
both still look similar to the corresponding reference
images. For example, in the first column of Fig. 9,
the yellow color is placed at the bottom right corner
in both scatterplots, the same as its position in the
reference; the adjacency of light and dark green colors
in the image is also present in both scatterplots. Note
the best among the five reference images in terms of
class separation changes when the input alters.

We generated a scatterplot by projecting the
MNIST dataset [34], which contains thousands of
handwritten images of 10 digits, to the 2D plane
using t-SNE [35]. Figure 8 shows the color mappings
of this 10-class scatterplot using colorful images as
guidance.

Our method can also suggest color mappings for
webpage layouts and infographics. In webpage design,
designers often use an image as the header and use

its color scheme for the webpage. Figure 10 shows
six suggested color mappings of a webpage layout
according to different header images. The input
is a web layout pattern specifying which connected
components can be colored and which components
must map to the same color.

In infographic design, images related to the
infographic’s topic are often used as references for
the color setting. Figure 11 shows four suggested
color mappings of an infographic according to
different background images, generated using the
interface in Fig. 7. Our method identifies all colors
used in the input infographic and asks the users
to mark the colors to replace. Then new color
mappings are automatically generated according to
the reference images. However, our method is limited
to infographics without gradient colors. Although
the first source image only has two dominant colors
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Fig. 10 Color mappings of a web layout according to six images. In each case, part of the corresponding image is the page header.

Fig. 11 Color mappings of an infographic according to four images. In each case, the corresponding image in the center is also the background.
Note that the light gray color in the second image is not selected because of its similarity to the infographic’s background. The infographic is
from Freepik.

(red-brown and green), our method still extracts a
distinct 4-color palette, and the two different versions
of red-brown are adjacent in the infographic, just
as in the source. The presented results are able to
nicely combine the given image with the webpage or
infographic in a coherent and harmonious way.

5.3 Extensions
It is easy to extend the method to optimize the
color mapping to any user-specified background color.
Without modifying other part of the method, we
simply let the minimal color distance of a palette C

take into account the background color c0:
dC = min

0�a,b�|C|,a�=b
E(ca, cb)

The colorization result is thus tailored according to
c0. Three colorization results with black, white, and
gray backgrounds are presented in Fig. 12. Note that
the source image is not very colorful, but we are still
able to extract colors distinct from each other and
from the background in each case.

It is also easy to add user-defined constraints to
the color assignment step. We only need to change
the candidate set according to the given constraints.
Figure 13 shows three color mappings of a treemap,
in which only the 2 most dominant colors of each
reference image are allowed to be assigned to the
largest rectangle.

6 Evaluation
We first evaluate our palette extraction step and

Fig. 12 Integrating a background color with the color mapping. The
source image is shown in the top left. The extracted color palette
changes for different backgrounds. Colors of each palette are in order
of lightness values.

Fig. 13 Three color mappings of a treemap. We add a constraint
that only the two most dominant colors are candidates for the largest
rectangle.

compare it with existing methods. Then we evaluate
our class assignment for visualization tasks by a
controlled user study. A limitation is shown later.
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6.1 Palette extraction evaluation
To evaluate the extracted palettes, we visually
compare results of our approach with those from
previous palette extraction methods [15, 18, 20, 24,
36]: see Fig. 14. The three test images have commonly
been used in previous works for comparison, and
palettes of other methods are taken from Zhang et
al. [24]. Our model tends to extract palettes with
large distances between colors, which are often easy-
to-spot and vivid. Our results are most similar to

Fig. 14 Examples of images and their associated color palettes
generated by O’Donovan et al. [15] (a), Lin and Hanrahan [18] (b),
Shapira et al. [36] (c), k-means (d), Chang et al. [20] (e), Zhang et
al. [24], and our method (g). Our results provide a more discriminable
palette. For example, in the middle photo, our method chooses a
brighter blue, which is more separable from the dark blue. Testing
images and palettes for other methods are taken from Zhang et al. [24].

those of Zhang et al. [24] as we use their initialization
to select seed colors. However, our method produces
palettes with lower similarities between different color
components.

We next consider palette extraction for varying
sizes of palette. The minimal distance of all color
pairs in the extracted palette (dC) decreases quite
slowly when the number of colors increases; see the
solid gray line for the left image and the dashed black
one for the right in Fig. 16. Although the values of
dC depend on the given images, the changing trends
are similar. Thus, we assume we can generate over
12 discriminable colors if they exist in the image.

6.2 Quantitative comparison
We quantitatively compare our method with two
other palette extraction methods that automatically
decide an optimal number of prominent colors in an
image. One is a color extraction Web API provided by
TinEye based on k-means clustering [37], chosen for
its popularity. The other was proposed by Aksoy et
al. [23] and exclusively selects colors that exist in the
image. We chose this state-of-the-art method as it
provides 100 testing images, as well as the extracted
palettes. According to the two methods, 17 out of
the 100 images include fewer than six distinct colors.
We removed these and compared six-color palettes
extracted from the remaining images. When the
palettes extracted by other methods have over six
colors, we selected six colors by greedily iteratively
removing the color that most increases the minimal
color distance of the remaining colors.

Fig. 15 Comparison with two common color palette extraction methods, TinEye [37] and Aksoy et al. [23]. Sometimes the number of colors in
a palette from other methods is larger than six. When this happens, we select 6 colors by greedily removing the color that can best increase the
minimal color distance of the remaining colors. We evaluate each palette using two measures: its minimal color distance dC , and the average
distortion between the quantized image and the original. Four example images and their corresponding palettes are shown. The minimal color
distances of our results ( green) are larger than for the others. Testing images are taken from Aksoy et al. [23].
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Fig. 16 Each line represents the minimal distances dC of a palette set, extracted from an image conditioned on different number of colors.
The colors inside each palette are in order of hue values. The two 12-color palettes in the bottom still have discriminable colors.

We evaluated each palette by two measures: its
minimal color distance and the average distortion
(MSE) between the quantized image and the original.
Figure 15 shows these values for four examples. It
can be seen that for most images, our palettes have
similar average distortion but larger minimal color
distances than others. Though we only compare six-
color palettes, our method is more advantageous when
the number of colors in the extracted palette increases,
since others do not explicitly penalize similar colors.
Thus, as the number of required colors increases,
they are more likely to choose similar colors than our
method.

We conducted a paired sample t-test to compare
the minimal color distance scores. Results found a
significant difference in the distance score comparing
our method (M = 23.06, SD = 7.46) to TinEye (M =
18.84, SD = 4.32, t(72) = 7.24, p < 0.0001), and
Aksoy’s method (M = 16.33, SD = 7.25, t(72) = 9.50,
p < 0.0001). This indicates that our method can
create a more distinct color palette than these others.
6.3 User study
6.3.1 Background
In general, it is difficult to define any ground truth for
a color mapping task. The choice often depends on
users’ preference for the reference image, the aesthetic
preferences of the user, and more. Thus, in our user
evaluation, we do not examine subjective preferences,
but rather focus on two main issues:
• Discrimination. In terms of discrimination, are

the color mappings generated by our method com-
parable to state-of-the-art methods? To answer
this, we performed several discrimination tasks

in which we examined participants’ perception
of the number of classes in a given scatterplot.
We hypothesized that the our method will be
comparable in these discrimination tasks.

• Similarity. Is the color mapping generated by our
method based on an image indeed more similar
to that image than color mappings generated
by non-spatial methods? To answer this, we
performed several similarity tasks, in which
we asked participants to judge which of two
scatterplots is more similar to a source image
in terms of color configuration. A neutral choice
option was also provided. We hypothesized that
our method will be perceived as more similar to
the source image in the similarity tasks.

As far as we know, no existing method explicitly
uses the spatial relationship between colors in an
image for color mapping of a data visualization
chart. Therefore we chose the recent color assignment
method for optimizing perception of class separa-
bility [7] (referred to as SepOpt) for comparison.
To ensure a fair comparison, the results of SepOpt
were also solved by graph matching after removing
the color spatial information from the formulation,
instead of the original genetic algorithm. As our core
algorithm deals with point sets, we performed the
user studies on scatterplots.

6.3.2 Participants
We recruited 20 participants, out of which 14 were
male and 6 were female, 18 were students and 2 were
designers. Their ages ranged from 22 to 36 years
old. None of them reported color vision deficiency.
We paid each participant $6 for the two tasks. The
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entire study took about 20–30 min. Each participant
first provided demographic information, and then
performed the discrimination tasks followed by the
similarity tasks.
6.3.3 Discrimination task
In each trial, each participant was first shown a
gray dot in the middle of the screen to calibrate
the eye gaze, followed by a scatterplot. They were
instructed to press a key when they knew the number
of classes. When the key was pressed, the scatterplot
disappeared. Then the participant chose the number
of classes from five options (5–9). We recorded the
time taken for each trial and counted the difference
between the actual class number and the participant
response as the error.

We used five multi-class scatterplots (1 of 6 classes,
two of 7 classes, and 2 of 8 classes), generating
them using the SepOpt method. First, a synthetic
scatterplot of 307 points with 6 classes was created.
Each class was placed according to a Gaussian
distribution with strong overlaps between classes.
Then we created other scatterplots by randomly
selecting some points to form new classes. As the
same points were used in all scatterplots, we rotated
each by a randomized angle for variety.

We selected the top 20 from images used for Fig. 15
according to the minimal color distances dC of their
palettes. To avoid unwanted learning effects, we
allowed each participant to see each color palette only
once, using a between-subject layout. After shuffling
the chosen images, we subdivided them into five equal-
sized subsets, each assigned to a scatterplot. Thus
there were two participant groups; every participant
was assigned to either group G1 or G2 and completed
20 trials. For the first 10 images G1 saw SepOpt
results and G2 saw our results. For the next 10
images, the groups were swapped. The corresponding
colorized scatterplots were shown at half of their
original resolution of 1048 × 1048 pixels with a small
point size of 4 pixels.

The results are summarized in Fig. 17. The
reported error is the sum of all errors made by a
participant on a given method. Figure 17 shows
the performance of participants on the two methods
are similar in terms of both error and time. An
independent samples t-test was conducted to compare
error based on our method (M = 2.95, SD = 2.84)
and SepOpt (M = 2.80, SD = 2.31). We observed

Fig. 17 Results of discrimination tasks, showing mean values and
deviation as 95% CIs of user error and timing.

no significant differences between them (t(38) =
0.18, p = 0.855), suggesting that our approach is
no worse than SepOpt. A second independent sample
t-test was conducted to compare time with our
method (M = 127.19, SD = 41.57) and SepOpt
(M = 133.50, SD = 52.36). We found no significant
differences in terms of time (t(38) = −0.422, p =
0.675). Figure 18(c) shows that the class separation
of our results is slightly lower, but it does not affect
the actual performance in counting tasks. A possible
reason is that the small change in class separation
score is not easy to spot when the value is high.
6.3.4 Similarity tasks
This task checked whether the color mappings
generated by our method are perceived as more
similar to the corresponding source images. We
used six palettes extracted from six images, three
of which are shown in Fig. 1. We used four different
scatterplots with 6 or 8 classes, two of which were
from Fig. 9 and the others were from SepOpt. Hence,
the total number of trials was 4 (scatterplots) ×
6 (palettes) = 24. In each trial, two scatterplots
generated by different methods using the same image
were shown in pairs. To avoid bias, we randomised
the locations for the two methods. An example is
shown in Fig. 19(top).

We asked participants to compare them with the
reference image on a 5-point Likert scale: The
left is much more similar, The left is slightly more
similar, No difference, The right is slightly more
similar, and The right is much more similar. The

Fig. 18 Class separation of the 40 scatterplots in counting tasks.
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Fig. 19 Top: example of similarity tasks. Participants were
instructed to compare the similarity of two colorings related to a
reference image. In this example, our result is shown on the left.
Bottom: result summarised as a bar. Most participants thought our
results resemble the source images better.

colored scatterplots were shown at a resolution of
1048 × 1048 pixels, with a larger point size of 6 pixels,
as similarity tasks should be insensitive to the point
size.

The participant’s choices are summarized in
Fig. 19(bottom). Overall, in 64% of the trials,
participants thought our results were more similar to
the source image, while only in 17% of the trials
did participants think SepOpt was more similar.
We conclude that our method manages to bring
the spatial relationship of the source image to the
target visualization. The scores of the spatial consis-
tency between colors in reference images and in the
scatterplots, shown in Fig. 20, also indicate our
color mappings can better preserve the color spatial
relations.

6.4 Limitations
Our method is built on an input reference image,
and can thus fail to produce a good color mapping
when the source image is unsuitable: more specifically,
when it lacks sufficient distinct colors. Figure 21(left)
shows a case in which some classes are difficult to
discriminate. Another color mapping which makes

Fig. 20 Left: color spatial consistency between reference images
and scatterplots used for similarity tasks in terms of adjacency and
position. Right: mean values and deviation as 95% CIs of position
and adjacency measurements.

Fig. 21 Left: an undesirable color mapping that fails to distinguish
classes from each other. Right: a good one. The respective class
separation scores are 11,555 and 19,477. The quality of our generated
color mappings depends on the reference images.

classes distinguishable and has a much larger class
separation score is shown on the right. We could
easily detect such failures by examining the minimal
color distance dC of extracted palettes and the
class separation scores. When dC is smaller than
a threshold such as 10, or the class separation score
is significantly lower than the scores of other color
mappings, we could warn users and suggest changing
the reference.

Furthermore, some image features, such as saliency,
foreground, and background, are ignored during color
palette extraction. Our algorithm also has several
parameters that need to be set: weights for linear
separation, color frequency, and minimal distance in
the palette extraction, and weights to balance the
binary and unary terms. Changing these weights may
slightly change the results. However, in all presented
experiments and results, we used constant values.

Finally, we evaluated the similarity between colored
visualizations and their corresponding references only
in terms of color spatial consistency.

7 Conclusions
We have presented an automatic image-guided
approach to produce color mappings for categorical
visualizations that are visually similar to source
images while allowing visual discrimination of classes.
The key idea is to extract a discriminable and
representative color palette from the reference image
using farthest-point sampling, and assign its colors
to classes in the visualization considering both class
discrimination and spatial distribution of colors in
the image. We show various results, evaluate the
approach numerically, and perform a controlled user
study to examine the perceptual effect of the method.

Some image features, such as the saliency,
foreground, and background, are ignored during color
palette extraction. There is a lot left for further
exploration. Now we exploit images to give graphical
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marks suitable colors. In the future, we could explore
image information to set other channels of graphical
marks, such as gradients, non-linear color triads [38],
outline colors, and even mark shapes. In addition,
we would also like to extend our method to support
the coloring of other visualizations such as maps.
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